
ANL-6697 ANL-6697

Slrgonne Bational labomtorg

A PRIMER ON THE ACT-m COMPILER

FOR THE

LGP-30 DIGITAL COMPUTER

by

H. C. Thacher, Jr. and R. E. Grench

LEGAL NOTICE

This report uxis prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B, Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis­
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

ANL-6697
Mathematics and

Computers
(TID-4500, 24th Ed.)
AEC Research and

Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

A PRIMER ON THE ACT-III COMPILER
FOR THE

LGP-30 DIGITAL COMPUTER

by

H. C. Thacher, J r . and R. E. Grench

Reactor Physics Division

October 1963

Operated by The University of Chicago
under

Contract W-31-109-eng-38
with the

U. S. Atomic Energy Commission

TABLE OF CONTENTS

Page

I. INTRODUCTION 7

II. NUMBERS 8

A. Integers 8

1. Integer Program Constants 8

2. Integer Problem Paramete r s 8

B. Real Numbers 9

1. Real Program Constants 9

2. Real Problem Paramete r s 10

III. SIMPLE VARIABLES 12

IV. THE ASSIGNMENT OPERATOR 13

V. ARITHMETIC OPERATIONS WITH REAL NUMBERS 15

A. Fundamental Operations 15
B. Precedence of Operations 16
C. Special Operations 17

D. Brackets 18

VI. STATEMENTS AND PROGRAMS 20

A. Statements 20
B. Statement Labels 21

C. Programs 21

VII. ELEMENTARY INPUT AND OUTPUT 23

A. Input 23
1. Integers 23

2. Real Numbers 23

B. Output 24

1. Format Integer 24
2. Real/Floating-point Output 24
3. Fixed-point Output of Floating-point Numbers 25
4. Integer Output 25
5. Right Operand 26
6. Carr iage Returns and Tabulates 26

TABLE OF CONTENTS

Page

VIII. ELEMENTARY CONTROL OPERATIONS 28

A. Unconditional Transfers 28

B. Conditional Transfers 28

1. Depending on Last Result 28

2. Depending on the Sign of an Expression 29

C. Transfers from Data Input 31

D. Miscellaneous Control Operations 32

1. Stop 32
2. Breakpoint Jumps 33

3. Overflow Skip 34

IX. ESSENTIALS OF A DEFINITIVE PROGRAM 35

A. Names of Variables 36

B. Remarks on Program Tapes 36

C. Remarks on Data Tapes 37

D. Sample Problems 37

X. COMPUTER OPERATION 38

A. Preparat ion of Program Tapes 38

B. Translation 39

C. Recompilation 41

D. Punchout of Object Program 41

E. Running the Program 42

F . Checking the Program 42

1. E r r o r Indications at Run Time 43
2. Use of Intermediate Output 43
3. Statement Stopping 43
4. Tracing 44

TABLE OF CONTENTS

Page

XI. USE OF LIBRARY PROCEDURES AND SUBROUTINES ^^

A. General Call for Procedures 45

B. Special Calls for Procedures 45

1. Functions of One Variable 45
2. Functions as Pa rame te r s 46

C. Translation of Procedures 46

XII. ARITHMETIC OPERATIONS WITH INTEGERS 47

A. Basic Integer Operations 47

B. Special Operations 48

C. Conversion between Integer and Floating-point Numbers . 48

D. Scaling Floating-point Numbers 49

XIII. SUBSCRIPTED VARIABLES 50

A. Dimension Statements 50

B. Single Subscripts 50

C. Incremented Indexes 52

D. Double Subscripts 52

XIV. ITERATIONS 54

XV. ADVANCED CONTROL OPERATIONS 56

A. Recalling a Subroutine 57

B. Setting Switches 57

C. Indexed Switches CQ

D. Calling Procedures cq

XVI. SPECIAL OUTPUT AND INPUT 59

A. Programmed Alphabetic Output in

B. Alphabetic Output and Input of Coded Information 60

TABLE OF CONTENTS

Page

C. Repeated Alphabetic Output 61

D. Compatible Output 61

E. Hexidecimal Output and Input 61

F. Read and Float 61

XVII. WRITING NEW PROCEDURES 62

A. Basic Requirements 62

B. References to Arguments 63

C. Temporary Exits from a Procedure 63

D. Global Variables 65

E. Checking Procedures 66

XVm. MACHINE OPERATIONS 67

XIX. CONCLUSION 68

APPENDICES

A. E r r o r s at Compile-Time 69

B. E r r o r s at Run-Time 70

C ACT-III Operators 71

D. Summary of Operations 75

E. ACT-III Operators and Decimal Memory Print 76

F. Codes for "aread" 79

G. Solutions to Exerc i ses 80

LIST OF FIGURES

No. Title Page

1. Flexowriter Keyboard 38

2. Computer Control Panel 40

3. Photoreader and High-speed Punch Control Panel 40

A PRIMER ON THE ACT-III COMPILER FOR
THE LGP-30 DIGITAL COMPUTER

by

H. C. Thacher, J r . and R. E. Grench

I. INTRODUCTION

Automatic digital computers offer a means of relieving scientists
and engineers of much tedious calculation. Our largest engineering and
scientific projects depend upon automatic computers to process and eval­
uate theoretical or experimental data. Any complicated calculation which
must be repeated a dozen or more , or even fewer, t imes is a worthwhile
application for the computer. This is part icularly true if the computer is
readily accessible without excessive administrative detai ls .

The many ways of using a computer vary in scope and speed. For
small problems in part icular , it is desirable to lay as much of the burden
as possible upon the computer. The difficulty a r i ses in communicating
with a programming specialist . The vernacular of the scientist or engi­
neer must be programmed for translation to the language obeyed by the
computer. The translation is accomplished by a special program called
a compiler . In most cases , therefore, the scales weigh heavily in favor
of the scientist or engineer writing his own program.

The purpose of these general notes is to give an introduction to the
writing of programs for the ACT-III compiler for the General Precis ion
LGP-30 Computer, and to the procedures for translating and solving prob­
lems with them. This compiler was developed by Dr. Henry J. Bowlden of
Union Carbide, Cleveland, Ohio. More detailed specifics of the language
and of the mode of action of the compiler are available in the manuals for
ACT-III, which he prepared. These manuals are distributed through POOL,
the LGP-30 Users Organization.

The reader must acquaint himself with the larger portion of this
pr imer to write his own programs . Sections XI, XV, XVI, XVII, and XVIII
can be left for reading last , as they contain more advanced programming
or are not necessary for the writing of simple p rograms . The authors
strongly reconnmend an initial scanning of the whole pr imer and then ad­
ditional work on the basic portions and example problems.

II. NUMBERS

Operation of the LGP-30 computer is typical of modern, high-speed,
digital computing equipment: calculations are performed pr imar i ly by com­
bining a ser ies of numbers through various ari thmetic operat ions. Ordinar­
ily, we are not concerned about the way numbers are handled inside the
computer, but we must know how to get them in and how they appear when
printed out.

Therefore, we begin by discussing the way in which numbers are
written for the ACT-III compiler. F i r s t , we must distinguish between two
kinds of numbers: integers, and real or floating-point numbers . These are
represented differently in the program, are combined by different opera­
tions, and are often used for different purposes. Secondly, numbers which
enter a program can be of two c lasses : (1) program constants, which will
be the same each time the program is used; and (2) problem pa rame te r s ,
which may vary from case to case .

The programmer can prescr ibe a variety of formats for output,
which will be described at a later stage.

A. Integers

Integers are used primari ly for counting, but they are also valuable
in other applications. ACT-III allows the use of positive and negative inte­
gers between -536,870,911 and -("536,870,911. However, a special multipli­
cation operation must be used if the product exceeds 134,217,727 m
magnitude.

1. Integer Program Constants

Integer program constants are res t r ic ted to positive values .
They can be entered in either of two forms:

(1) Up to five digits, followed by a stopcode ('); for example,
123', 0', 12345',

(2) A plus (+) sign, followed by one to four digits, a stopcode,
and zero to five digits, and another stopcode; for example,
+ r 2 3 4 5 r , -l"123'456', +123'.

2. Integer Problem Paramete r s

Integers which are problem paramete rs , or data, may be of
either sign, but are limited to a maximum of seven digits. The format

consists of a sign and one to seven digits, followed by a stopcode; for
example,

•H234567', -14 ' , -1-0000563'.

If tabs or other charac te rs are used to separate data, the full sign and
7-digit representat ion must be used.

B. Real Numbers

Most calculation is done with real , or floating-point numbers .* In
ACT-III, rea l numbers consist of a signed fraction, with magnitude between
0.1 and 1.0, and slightly less than eight decimal-place accuracy, and an ex­
ponent between -32 and 31. The value of the number is the product of the
fraction and ten to the value of the exponent. In addition, zero can represent
either a real number or an integer. Floating-point ari thmetic rel ieves the
p rogrammer from estimating the magnitudes of intermediate resul ts , which
is otherwise necessary to avoid exceeding the capacity of the machine. It
is, however, slov7er and less accurate ,

1. Real Program Constants

Real program constants are limited to positive values. They
consist of the following components which must be specified in the sequence
cited:

(1) decimal point;

(2) one to four digits (the first digit cannot be zero);

(3) stopcode;

(4) zero to five digits;

(5) stopcode;

(6) exponent e (or e- if the exponent is negative);

(7) absolute value of the exponent as a 1- or 2-digit number;

(8) final stopcode.

*We will use the t e rms "real" and "floating-point" interchangeably. The
t e rm "real ," as used in the international algorithmic language Algol,
descr ibes a number which can take on any positive or negative value,
or zero . The t e r m "floating-point" descr ibes a part icular way (in
ACT-III, it is the usual way) of representing a real nunnber in the com­
puter. The floating-point representat ion is closely related to ordinary
scientific notation whereby very large and very small numbers are
represented with a scaling factor of a power of 10.

10

T h u s , a s a r e a l p r o g r a m c o n s t a n t ,

100,000.7 = 0.1000007 x l o '

would be e x p r e s s e d in the f o r m

. 1 0 0 0 ' 0 0 7 ' e ' 6 ' .

S i m i l a r l y , the c o n s t a n t

0.00105 = 0.105 X 10"^

would t ake the f o r m

. 1 0 5 " e - ' 2 ' .

When used for p r o g r a m c o n s t a n t s , the f l oa t i ng -po in t z e r o and
the f ixed-po in t z e r o a r e both r e p r e s e n t e d by z e r o .

Desp i t e the a p p a r e n t ab i l i ty to spec i fy up to n ine s ign i f i can t
d ig i t s in the ACT- I I I c o m p i l e r , only the f i r s t e ight d ig i t s a r e u s e d in the
c o m p u t e r .

2. Real P r o b l e m P a r a m e t e r s

Rea l p r o b l e m p a r a m e t e r s , or d a t a , a r e spec i f i ed and a r r a n g e d
in the following s e q u e n c e :

(1) p lus or m i n u s s ign ;

(2) one to s even d ig i t s (the f i r s t d ig i t canno t be z e r o) ;

(3) s topcode ;

(4) plus or m i n u s s ign (for the exponen t) ;

(5) one or two d ig i t s (the exponen t) ;

(6) final s t o p c o d e .

T h u s , a s a r e a l p r o b l e m p a r a n n e t e r

100,000.7

•would be e x p r e s s e d in the f o r m

-l-1000007'-l-6'.

11

Similarly, the parameter

would take the forr

and zero could be written as

-0.00105

-105 ' -2 ' ,

+0'+0'.

EXERCISES

1. Express the following integers as integer program constants and
as integer problem pa rame te r s . If it is impossible to do so, indicate why.

a.) +1 e.) -536,870,911

b.) +321456 f.) 0

c.) -52 g.) +742,125,000

d.) +536,870,911 h.) +3.1416

2. Express the following integer program constants as integer
problem paramete r s and as integers. If it is impossible to do so, or if the
"program constant" is incorrect , indicate why.

a.) +0' e.) r

b.) - 1 ' f.) 102"

c.) +1234" g.) +7000'00000'

d.) +r23456 ' h.) -700'0000'

3. Express the following numbers as floating-point program con­
stants and as floating-point problem pa rame te r s . If it is impossible to do so,
indicate why, and, if possible, give the nearest approximation.

a.) 0 e.) 3.14159265

b.) 15.0 f .) 5.3 X 10^'

c.) 6 . 0 2 x 1 0 " g.) -0.195 X 10^"

d.) -3.00 X 10'" h.) 0.253 x lO'^^

4. Express the following floating-point program constants as
numbers and as floating-point problem pa rame te r s . If it is impossible to
do so, or if the "program constant" is incorrect , indicate why.

12

a.) .512'34678'e'5' e.) +.512"e'5'

b.) .5"e- '32 ' f.) .512"e ' -5 '

c.) .7"e'32' g.) .512 'e - '5 '

d.) - .4"e '0 ' h.) .51234'2678'e'O'

5. Express the following floating-point problem pa ramete r s as
floating-point program constants and as numbers . If it is impossible to
do so for certain cases , or if the "problem paramete r" is incorrect ,
indicate why.

a.) +0'+0' e.) +1230000'+7'

b.) -1234567'89'e '-5 ' f.) +0000123' + 7'

c.) -12 ' -2 ' g.) +1234567'89'-5'

d.) +123456'+7' h.) .1234567'-! '

III. SIMPLE VARIABLES

In most calculations, the same set of operations is performed with
several different sets of numbers . These numbers are substituted for single
le t ters which denote the variables in the basic formula or se r i es of formulas
being computed.

In similar fashion, ACT-III allows variables which will be given
values either by reading in problem parameters or by calculations performed
during the program. Ho'wever, instead of restr ict ing the names of variables
to single le t te rs , ACT-III will accept any combinations of up to five l e t t e r s ,
or le t ters followed by digits or other symbols, and ending with a stopcode.
The program does not distinguish between upper and lower case l e t t e r s ;
hence, A' and a' would represent the same identifier.

Certain words and combinations of le t ters , digits, and/or symbols
are excluded from use as names of variables, since they represent specific
operations in the ACT-III vocabulary (see Appendix C). For example, com­
binations of one to five digits, or a plus sign (+) followed by one to four
digits, are interpreted as program constants. The let ter x is rese rved to
denote multiply. Other combinations beginning with the let ter s and followed
by one to four digits are reserved for labeling s tatements .

In identifying variables , it is essential that the names be as desc r ip ­
tive as possible to help in understanding the program. The following are ex­
amples of acceptable names for simple var iables :

eks ' , ex ' , delta ' , fO', t j - 1 ' , fbarl ' , y ' .

13

EXERCISE 6

Which of the following represent acceptable names for simple va r i a ­
bles? Why are the others unacceptable?

a.) tempi ' f.) sine'

b.) t emporary ' g.) aO'

c.) x' h.) a*' (or a2')

d.) root ' i .) s092'

e.) sin' j .) +123'

IV. THE ASSIGNMENT OPERATOR

One of the most common types of calculation consists of evaluating
a se r ies of formulas and substituting the resul ts of the evaluations into other
formulas to calculate the desired quantity. For example, the density of a
substance d may be expressed by the formula:

Density d = mass /volume . (l)

The volume of a sphere is given by

Volume = 4 X 3.141592 X (radius)V3 . (2)

The radius, in turn, is given by

Radius = d iameter /2 . (3)

We can calculate the density of a mater ia l from the mass of a sphere of
given diameter by using Eq. (3) to find the radius; by substituting the radius
in Eq. (2) to find the volume; and, finally, by substituting the volume in
Eq. (1).

Similar calculations may be specified in ACT-III, although the nota­
tion is slightly different. Instead of writing the quantity to be determined at
the beginning of the formula, we write it at the end; and instead of in terpos­
ing an equality symbol, we use the assignment operator :'. This operator
may be read as "yields," or " replaces ," and is really a more exact expres ­
sion of what we wish to do than is the equality relation. For example, we
may write

y' + 'del ta ' : 'y" .

14

indicating that we wish to replace y with y + delta. On the other hand, if
we were to write

y + delta = y

we have an impossible equation, except for delta equals zero .

The assignment operator :' assigns the value of the quantity on the
left to the variable on the right. When a new value is assigned to the va r i ­
able, the previous value is lost . Obviously, the right operand of the ass ign­
ment operator must be a single variable and not, as for most other operators ,
a more complex expression.

Assignment operators can be used in succession to assign the same
value to several var iables . For example, the sequence

. l " e ' l ' : ' a ' : ' b ' : ' c "

will give the floating-point value 1.0 to each of the three variables a, b, and c.

It is not permissible to use an expression ending with an assignment
operator and variable as the left operand for any other operator ; for example,

. r ' e ' l ' : ' a ' + 'b ' : ' c" .

The desired result of assigning 1 to a and (a + b) to c may be produced by
writing

. l " e ' r : ' a "

and

a' + 'b ' : ' c" .

A more efficient program would result from replacing the last line with

prev' + 'b ' : 'c ",

where the special operand prev ' denotes the result of whatever operation
was last executed. When used in this manner, prev ' should be the first
operand encountered in the statement.

EXERCISE 7

What would be the values of a, b, and c after the following sequence
of assignments?

15

0

1

2

a

b

c

te

: 'a"

: 'b"

: ' c"

: ' tempi"

: 'a"

: 'b"

mpl ' ' c "

Elementary and tedious as this exercise may seem, it does i l lustrate
an excellent way of understanding a complicated program.

V. ARITHMETIC OPERATIONS WITH REAL NUMBERS

ACT-III provides the usual ari thmetic operators for addition, sub­
traction, multiplication, and division of constants and var iables , as well as
several more complicated types of combinations, such as exponentiation and
the common elementary functions. These operations a re provided both for
real (floating-point) operands and for in tegers . Since the real operands are
more useful, we will discuss them first .

A. Fundamental Operations

The basic operations of ari thmetic combine two quantities which are
identified as right and left operands, since they appear to the right and left
of the operation symbol. For example, in the algebraic expression (a + b),
a^ is the left operand, _b_ is the right operand, and ±_ is the operation symbol.

ACT-III provides for addition, subtraction, multiplication, and
division of floating-point operands. Each of these operations is represented
by a distinct operator syimbol followed by a stopcode:

Addition +'

Subtraction - '

Multiplication x '

Division / '

Thus the ACT-III expression

a' + 'b '

produces the same result as (a + b) in ordinary algebra.

16

T h e r e is one i m p o r t a n t d i s t i n c t i o n b e t w e e n A C T - I I I and t r a d i t i o n a l
a l g e b r a i c no t a t i ons for m u l t i p l i c a t i o n of f a c t o r s . In a l g e b r a , the f a c t o r s a r e
d i s p l a y e d in j u x t a p o s i t i o n , and the m u l t i p l i c a t i o n s y m b o l i s o m i t t e d ; for e x ­
a m p l e , ab d e n o t e s the p r o d u c t of a and b .

By c o n t r a s t , the m u l t i p l i c a t i o n o p e r a t o r m u s t be i n t e r p o s e d b e t w e e n
the f a c t o r s to be m u l t i p l i e d in an A C T - I I I e x p r e s s i o n . J u x t a p o s i t i o n of
f a c t o r s h a s a d i f fe ren t m e a n i n g (see Sect ion XIII: S u b s c r i p t e d V a r i a b l e s) .

B. P r e c e d e n c e of O p e r a t i o n s

In w r i t i n g A C T - I I I e x p r e s s i o n s , c e r t a i n r u l e s and c o n v e n t i o n s m u s t
be o b s e r v e d . They a r e d e s i g n e d to avoid a m b i g u i t y wi th r e s p e c t to the c o m ­
bining of t e r m s a n d / o r the s e q u e n c e in which o p e r a t i o n s a r e to be p e r f o r m e d .

S imple a l g e b r a i c s u m s pose no p r o b l e m . F o r e x a m p l e , the A C T - I I I
c o u n t e r p a r t of the a l g e b r a i c s u m

a + b - c + d

would be e x p r e s s e d and e v a l u a t e d a s

a ' + ' b ' - ' c ' + 'd ' .

H o w e v e r , when addi t ion and s u b t r a c t i o n a r e c o m b i n e d wi th m u l t i p l i c a t i o n
and d iv i s ion , the o r d e r in which the o p e r a t i o n s a r e p e r f o r m e d b e c o m e s i m ­
p o r t a n t . In a l g e b r a , th i s is t aken c a r e of by the g e n e r a l c o n v e n t i o n t h a t ,
u n l e s s o t h e r w i s e i nd i ca t ed by b r a c k e t s or p a r e n t h e s e s , a l l m u l t i p l i c a t i o n s
and d i v i s i o n s a r e p e r f o r m e d be fo re add i t i ons and s u b t r a c t i o n s . A c c o r d ­
ingly, the e x p r e s s i o n

a X b + c X d

is eva lua t ed a s

(a X b) + (c X d) .

In A C T - I I I , the d e s i r e d s e q u e n c e of o p e r a t i o n s i s a s s u r e d by a s s i g n ­
ing a p r e c e d e n c e n u m b e r to e a c h o p e r a t o r s y m b o l , a s fo l l ows :

O p e r a t o r Symbol P r e c e d e n c e No.

Mul t i p l i ca t i on x ' 2
D iv i s ion / ' 2
Addi t ion +' 1
S u b t r a c t i o n - ' 1
A s s i g n m e n t : ' g

17

(see Appendix C for listing of all precedence numbers) . In evaluating an
expression, operations of highest precedence are performed first , then
those of next highest precedence, and so on. If two operations of equal
precedence are side by side, the one on the left is performed first . This
may be important since in computing with a limited number of significant
f igures,

(a + b) + c

is not necessar i ly equal to

a + (b + c).

Another example is the expression

a X b / c X d.

In conventional algebra, this might be interpreted either as

(a X b X d)/c

or as

(a X b)/(c X d).

In ACT-III, the "equal precedence" rule would prevail , and the lat ter in­
terpretat ion would be evaluated as

a ' x ' b ' / ' c 'x 'd ' .

C. Special Operations

Among the less -common operations, the ACT-III l ibrary provides
for exponentiation, sign change, square root, natural logari thm, common
logarithm, exponential, sine, cosine, arctangent, and absolute value. Each
operation is denoted as follows:

O p e r a t i o n

E x p o n e n t i a t i o n
Sign change
S q u a r e roo t
N a t u r a l l o g a r i t h m
C o m m o n l o g a r i
E x p o n e n t i a l
Sine
C o s i n e
A r c t a n g e n t
A b s o l u t e va lue

t h m

O p e r a t o r

pwr '
0 - '

s q r t '
I n '

l o g '
e x p '
s i n '
c o s '
a r t a n '
a b s

18

The operator randm' produces a pseudo-random floating-point number be­
tween 0 and 1. All of these operations are of precedence 3, i.e., they a re
performed before multiplications or divisions.

The exponentiation operator pwr' has both a left and a right operand.
For example, the expression

a 'pwr 'b '

produces the quantity a*̂ , where both a. and b_ a re floating-point constants
or variables .

The other operators listed act on a single quantity, i .e. , the variable
or constant immediately following. Since the operator - ' denotes subt rac­
tion, it cannot be used to calculate the negative value of a quantity. Instead,
we must use the operator 0- ' , or the equivalent, but somewhat slower op­
erator 0 ' - ' . To calculate the expression

a + v ^

v/e v/rite

a '+ ' sqr t 'b ' .

Obviously, the operators sqrt ' , In', and log' can be applied only to positive
operands. The angles for sin' and cos ' , and the resul t for ar tan ' a re ex­
pressed in radians.

D. Brackets

Parentheses , brackets, and braces are used in algebra to enclose
groups of te rms whose result is to be treated as a single-number expression.

The same technique is employed in ACT-III; however, only a single
form of bracket pair, i.e., [']', is used to delimit the desired groupings. A
group of constants, variables, and operators enclosed in a pair of these
brackets is treated as a single operand for any immediately preceding or
following operator. Thus the largest root of the quadratic equation

would be expressed

['0 - ' b '+ ' sq r t ' [' b ' x ' b ' - ' . 4 " e ' I ' x ' a ' x ' c '] '] ' / ' [' . 2 " e ' l ' x ' a '] '

19

This expression is also i l lustrative of the following observations
on the necessi ty of using brackets for grouping t e rms , and/or al ternate
methods of achieving the same resu l t s . F i r s t , all sets of brackets a re
considered necessa ry in the mode of expression cited. The outer pair
(left of the solidus) is required to specify that

-b + Vb^ - 4 ac

is the numera tor . If they were omitted, only the square root would be
divided by 2a. The inner pair of brackets delimits the discriminant of
the square root operator . If they were omitted, the numerator would be
interpreted as

(-b + b^/2 . 4 ^^)

The brackets to the right of the solidus define the denominator. If they
were omitted, the root would be

(-b + Vb^ - 4 ac) X a /2 .

The brackets in the denominator could be eliminated and essential ly
the same resul ts could be obtained by writing

['0 ' - ' b ' + ' sq r t ' [' b ' x ' b ' - ' . 4 " e ' I ' x ' a ' x ' c '] '] ' / ' . 2 " e ' l ' / ' a ' .

This would be evaluated as

([(-b + yb^-4ac)] /2) /a .

A second observation, with respect to the basic i l lustration, is
that bracketed expressions may occur inside other brackets . In ACT-III,
up to seven sets of brackets may occur in a nest . This is sufficient to
meet almost all needs. If more brackets a re required, they can be written
to some level less than seven along with instructions to assign the resul t
to some temporary var iable . Thus

a ' / ' [' b ' + ' [' c 'x ' ['d ' + ' e '] '] '] ' : ' r "

with a bracket depth of three , might be replaced by

d' + ' e ' : ' tempi"

tempi 'x 'c ': ' tempi "

templ ' + 'b ' : ' t empi"

a ' / ' t e m p i ' : 'r "

with no brackets at a l l . The reader may adjudge one pair of brackets in
this example as unnecessary . The inclusion of unnecessary bracket pai rs

will have no effect on the operation of the program, and the cautious p ro ­
grammer will insert brackets wherever there is any possibility of ambiguity.

Every complete expression should have an equal number of opening
and closing brackets . This is a common type of e r r o r and is checked by the
t ranslator program. A simple manual check consists of assigning numbers
(from 1 to 7), in ascending and descending order , respectively, to opening
and closing brackets as they are encountered in an expression. Accordingly,
the final closing bracket should have the number 0. To i l lustrate , the follow­
ing expression has been checked by this method:

1 2 3 2 3 2 1 0

0- ' [' a '+ ' sq r t ' [' b 'pwr ' [' c 'x 'd '] ' + ' e x p ' [' a ' / ' c '] '] '] ' .

EXERCISE 8

If a = 0.1 X 10°, b = 0.2 X 10°, c = 0.8 X 10°, and d = 0.4 x 10°,
give the values of the following expressions:

a.) a '+ 'b 'x 'c '

b.) a ' / ' b ' + 'c 'x 'd '

c.) a 'x 'b ' / ' c ' x 'd '

d.) a ' / ' b ' / ' c '

e.) a ' - ' b ' x ' d ' / ' c '

VI. STATEMENTS AND PROGRAMS

A. Statements

We are now ready to consider the basic segment of an ACT-III p ro­
gram: the statement. A statement may contain up to 63 words. (A word is
a variable, a constant, an operation, or a statement number.) Every s ta te­
ment is terminated by a second stopcode. It is unusual, however, and
inadvisable to write the full length of a statement, since in checking the pro­
gram, only resul ts of complete statements a re accessible . Therefore, the
difficulty of locating an e r r o r in a faulty statement increases rapidly with
its size.

In most cases , the grammar of the ACT-III language brings a logical
end to a statement long before the maximum length is reached. Certain op­
erations such as the assignment operator, the output opera tors , and a few
others, do not have any result , in the sense of a numerical answer which can

21

be used as a left operand for another operator . Two successive var iables ,
or a variable and a constant, have a special meaning (see Section XIII: Sub­
scripted Variables) . Thus it is not possible to follow an operator which
does not have an answer by any operator which requires a left operand.
Ordinari ly, therefore, every sequence of assignment operators with right
operands ends a statement.

B. Statement Labels

Statements may be labeled with statement numbers . Although
l iberal use of statement numbers is good pract ice, it is not necessa ry to
label every statement. When statement labels a re used, however, the label
must be the first word of the statement. It consists of the let ter _s_ followed
by an integer between one and 192, and a stopcode. Statement numbers may
be assigned in any order ; for example,

s i '

s l 0 5 '

s003' (equivalent to s3 ') .

Statement labels a re useful in several r e spec t s . F i r s t , they ass i s t
in effecting program checkouts. The s ta tement-by-sta tement print-out of
calculated resul t s (trace) includes statement numbers of all labeled s ta te­
ments . This helps the p rogrammer to locate himself in the print-out .
Fu r the rmore , stop orders may be compiled so that the number of the s ta te­
ment appears in the oscil loscope. This is convenient in determining the
reasons for stops.

Second, statement numbers may be used to re -en te r a program
after an interruption. The t rans la tor for ACT-III produces, among other
outputs, a l ist of the locations of the first instruction of every numbered
statement. In the case a calculation is interrupted, either because of m a ­
chine malfunction or because of work of higher priori ty, the operator may
easily s ta r t at any numbered statement. Since output and input devices a re
par t icular ly prone to fai lure, it is good practice to label all input and out­
put s ta tements , or at least the first of each group.

Finally, statement numbers may be used to direct abnormal
changes, jumps, or al terat ions in the normal flow of calculation from the
end of one statement to the beginning of another. Usage of statement
numbers for these purposes will be discussed in a later section.

C. P r o g r a m s

A program is a se r i es of s tatements which di rects the carrying out
of the ent ire calculation in the desired manner . The end of a p rogram is

22

indicated by an additional stopcode, following the stopcode which ends the
last statement. When this stopcode is recognized by the t rans la tor , it
signals that the translation is completed. The t ranslator proceeds to output
information on actual locations for the programmer and then stops. It is
not possible to continue translation following the end of a program, although
the t ranslator may be reset to translate an entirely new program.

EXERCISE 9

Write ACT-III statements assigning each of the following values to
the variable r e s ' :

a.) ([(-0.25 z + 0.33333333)z - 0.5] z + l)z.

This is the fastest and most convenient way of evaluating the polynomial

-zV4 + z y 3 - z y 2 + z,

which is approximately equal to In (l + z) when z is not too large or too
near - 1.

b.) The following continued fraction is a somewhat better approxi­
mation to ln(l + z):

1 +

2 +

3 + 0.20000000 z

c.) z O . U l l U l + 1.8888889

(z + 2.4313725 - 0 .48058439

z + 1.5686275)

d.) O . l U l l U l z + 1.8888889 - 4 .5925926

z + 2 .6290323 - 0 .27098508

z + 1.3709677

The expressions in b.), c) , and d.) are algebraically equivalent.
Compare them with respect to speed and accuracy of computation.

EXERCISE 10

Write statements for converting between the rectangular repr
tation of a complex number:

23

z = X + iy

and the polar representat ion:

and back. Assume x > 0. Write expressions for the real and imaginary
par t s of the sum, difference, product, and quotient of two complex numbers .
Choose names for your var iables which ass is t in understanding your
notation.

VII. ELEMENTARY INPUT AND OUTPUT

To be of any value, a program must be able to accept problem pa ram­
eter data and to communicate the resu l t s . ACT-III provides a considerable
var iety of operations for this purpose. The most frequently used operations
will be described in this section. A few specialized input and output opera­
tions will be discussed in Section XVI.

A. Input

1. Integers

The input format for integer problem pa ramete r s was described
in Section II. Briefly, they are represented as a sign, either + or -, followed
by up to seven digits and a stopcode. The instruction i read ' with a right
operand causes a number in integer format to be read by the reader and
assigned to the right operand. Thus with +15 ' in the reader , the statement

i r ead 'n"

would cause n to take the integer value +15.

2. Real Numbers

It will be recal led from Section II that the problem parameter
for real or floating-point numbers consis ts of two sect ions. The first s ec ­
tion consists of a sign, followed by from one to seven digits and a stopcode.
The second section includes an integer between -32 and +31, and another
stopcode. The instruction read ' with a right operand causes a number to be
read in floating-point format and assigned to the right operand. Thus, with
+5 '+3 ' in the reader , the s tatement:

read 'eks "

would cause the variable eks ' to be given the value +0.5 x 10^.

24

B. Output

Output operations are a little more complicated, since it is desirable
to specify both the number and the arrangement , or format, in which it is to
be printed. The print instructions discussed in this section require an inte­
ger as a left operand, to specify the format, and a right operand to specify the
number to be printed.

1. Format Integer

The format integer is the same for the three output operations
described in this section. It specifies first , the total width of the column
in which the number is to be printed (including leading spaces), and, sec ­
ondly, the number of digits to be printed after the decimal point. If w is
the width of the column, and d_ is the number of digits to be printed after
the decimal point, the format number is

f = 100 w + d

For example, the format number 2008 will cause a number with eight digits
after the decimal place to be printed in a column twenty spaces wide.

2. Real/Floating-point Output

The standard output operation for a floating-point number is

print ' .

The statement

f'print 'a"

causes the floating-point number a, to be printed as a fraction and expo­
nent. If the format number is f, the program prints leading spaces as
needed, then a space (if the number is positive or minus sign if negative),
decimal point, the fractional part of a., space, e (or e- if the exponent is
negative) and a 2-digit exponent.

The sign, decimal point, and exponent require seven spaces-
therefore w must be at least seven before any digits of the fraction can
be printed. If w is less than seven, only the exponent will be printed If
w IS greater than seven, but w - d is not, the number of fraction digits
printed will be reduced. Since the number of significant digits ca r r i ed by
ACT-III floating-point arithmetic system is between seven and eight the
value of d should not exceed eight digits. The format number 1608 will
give all the information in a minimum space.

25

3. Fixed-point Output of Floating-point Numbers

Although the standard floating-point output is the most generally
useful, there are occasions where an unsealed output with a fixed number of
decimals is convenient. The operator

dpr t '

fulfills this need. The statement

f 'dprt 'a"

causes the floating-point number a^ to be printed as an ordinary decimal
number, with d (from the format number) digits after the decimal point.
If the number is too large to be printed in the space allowed, the number
of decimal places is reduced. Otherwise the number is printed in floating­
point format, and the last decimal place printed is rounded.

4. Integer Output

Numbers stored as integers may be printed by the operation

ip r t ' .

The statement

f ' ip r t ' i "

will cause the signed integer _i to be printed. The format number X is in­
terpre ted as follows: the number of hundreds gives the width of the field
in spaces , as for pr int ' and dprt ' . However, if the width allowed is insuf­
ficient, the ent ire integer is printed anyway. A decimal point is inserted
a rb i t r a r i ly d^ digits from the right of the integer, unless d is zero . The
use of a d̂ g rea ter than eight digits gives meaningless r e su l t s .

To i l lustrate these operat ions, the following outputs for j . would
be obtained from the s tatements cited as columnar heads:

a I606 'pr in t 'a" l606 'dpr t ' a"

1.234567 .123457e 01 1.234567

-0.001234567 -.123457e-02 -0.001235

With _a. = 1234567, the statement

1606' iprt 'a"

26

would produce

-1.234567.

5. Right Operand

Clearly, the right operand of an input operator must be a single
variable; it would be meaningless to assign the value read from tape to, say,
['a' + ' b '] ' . The right operands of output opera tors , however, may be as com­
plex an expression as desired, provided that the whole expression is enclosed
in brackets . Thus, the statement

1608'pr int ' [' ['0 ' - 'b ' + ' sq r t ' [' b 'x 'b ' - ' . 4 " e ' I ' x ' a ' x ' c '] '] ' / ' [' . 2 " e ' l ' x ' a '] '] "

would compute and print the larger root of the quadratic equation

ay^ + by + c = 0

6. Carriage Returns and Tabulates

Two additional operators are provided to ass i s t in controlling
the format of the computer output. The operator cr ' effects a car r iage r e ­
turn and advances the paper one line. The operator tab ' moves the carriage
to the next tab stop specified.

In typing the program tape, it is convenient to know that carriage
returns are ignored by the t rans la tor . On the normal Flexowri ter , tabs are
treated as a blank character . On the 4-mode Flexowri ter , they are ignored.
Thus, carr iage returns always can be used to improve readability, and tabs
to separate comments. Tabs may also be used to set off data tapes only if
the number following comprises a sign and seven digits . Other uses of the
tab are to be avoided if the normal Flexowriter is used. In both Flexo-
wr i te rs , spaces are always treated as charac te r s ; all other control keys
are ignored.

Liberal use of carr iage re turns and tabs is suggested for they
greatly improve the printout for reading, duplicating, and report writing
purposes.

EXERCISE 11

What output would be produced by the following program:

cr ' i read 'n"

read 'b"

n ' iprt 'n "

27

n 'pr in t 'b "

n 'dpr t 'b ' "

with each of the following sets of input:

a.

b.

c.

d.

e.

f .

g-

+0' + 1234567'-5'

+ 1605' + 1234567'-5

+802' + 1234567'-5'

+802'+1234567'+0'

+200'+1234567'+0'

+202'-1234567'+5'

+l608'+1234567'+5

VIII. ELEMENTARY CONTROL OPERATIONS

In most programs, the control of computer operations is inflexible:
statements are executed successively in the order in which they are
written. This section describes the methods that can be employed m
ACT-III to provide a versat i le program. More specifically, the operators
which can effect unconditional or conditional t ransfe rs , or other d igres­
sions, form the basic order of operations.

A. Unconditional Transfers

The operator los^', followed by a statement number, causes the
statement labeled with that number to be executed. For example, in the
case of the quadratic equation

ay^ + by + c = 0

the equation solver can be made to compute the roots of any number of
equations by writing

s5' c r ' r ead ' a "

read'b"

read 'c"

I608 'p r in t ' [' [' s q r t ' [' b ' x ' b ' - ' . 4 "e ' l ' x ' a ' x ' c '] ' - ' b '] ' / ' [' . 2 "e ' l ' x ' a '] "

use ' s5" ' .

This program will read a set of values for a, b, and c, print the l a rger
root of the equation, and return for another set of parameter values.

B. Conditional Transfers

The program which we have just written will work provided that,
in all cases , a / 0 and that b^ > 4ac. If a = 0, the computer would be
instructed to divide a number by zero and would stop. If b - 4ac was
negative, the equation has a pair of complex roots.

1. Depending on Last Result

There are two operators which change the flow of a program
under certain conditions. The operator t rn ' , followed by a statement
number, causes the numbered statement to be taken next if, and only if,
the result of the last operator is negative. If it is positive or zero, the
following statement is executed. Thus to continue our quadratic equation
example, we might revise the program as follows:

29

s5 ' c r ' r e ad ' a "

read 'b"

read ' c"

b ' x ' b ' - ' . 4 "e ' l ' x ' a ' x ' c ' : ' d i s c r "

t rn ' s6"

cr ' 1608 'p r in t ' [' [' sq r t ' d i sc r ' - ' b '] ' / ' [' . 2 "e ' l ' x ' a '] '] "

c r ' l 6 0 8 ' p r i n t ' [' 0 ' - ' s q r t ' d i s c r ' - ' b '] ' / ' [' . 2 " e ' l ' x ' a '] '] "

use ' s5"

s6' c r ' l 608 'p r in t ' [' [' 0 ' - ' b '] ' / ' [' . 2 "e ' l ' x ' a '] '] "

1608 'pr in t ' [' sqr t ' ['0 ' - 'd i scr '] ' / ' [' .2"e ' l 'x ' a '] '] "

use 's5" '

This program will print real roots on separate l ines. If a root is com­
plex, it will print the real part, followed by the complex part on the same
line.

2. Depending on the Sign of an Expression

Provision can be made for three possibilities that the coeffi­
cient a vanishes by including an f̂.' statement. The if statement con­
sists of the operator if follo-wed by a variable or an expression in
brackets . This, in turn, is followed by neg' and a statement number;
zero ' and a second statement number; and pos' and a third statement num­
ber . One, two, or all three possibilities may be included; however, in the
lat ter case, they must be written in the order given.

Accordingly, the if statement t ransfers control to the s tate­
ment whose number follows neg' (if the expression is negative), or to the
statement whose number follows zero ' (if the expression is zero), or to
the statement whose number follows pos' (if the expression is positive).
If none of these conditions is met, the program continues on to the next
statement. Thus, we may write

s i ' i f ' [' y ' - ' z '] ' neg ' s l0 'pos ' s20"

s2' if w 'neg 's30 'zero 's40"

s3 ' i f 'y 'pos 's50"

s4' y' + ' z ' - 'w ' : ' v " .

Under these conditions the statements will be executed in the following
sequence:

30

Statement slO', if y < z

Statement s20', if z < y

Statement s30', if y = z, and w < 0.

If y = z and w = 0, statement s40' will be executed next. Statement s50'
will be executed next only if y = z, w > 0, and y > 0.

The program for solving quadratic equations can be improved
further by including an if statement to test for the vanishing to the
coefficient a.

s5' c r ' r ead ' a "

read 'b"

read 'c"

if'a' zero' s7"

.2"e ' l 'x 'a ' : 'denom"

b 'x ' b ' - ' . 4 "e ' l ' x ' a ' x ' c ' : ' d i s c r "

t rn ' s6"

sqr t 'd i sc r ' : 'discr"

c r ' 1608 'p r in t ' [' [' d i sc r ' - ' b '] ' / ' denom']"

c r ' 1608 'p r in t ' [' [' 0 ' - ' d i sc r ' - ' b '] ' / ' denom'] "

use' s5"

s6' sq r t ' [' 0 ' - ' d i sc r '] ' : ' d i sc r "

cr ' 1608'print' [' ['0- 'b'] ' / 'denom']"

1608'print' ['d iscr ' / 'denom']"

use ' s5"

s7' c r ' 1608 'p r in t ' [' [' 0 - ' c '] ' / ' b '] "

use' s5" ' .

In addition to providing for the possibility that a = 0, this
program has been improved with respect to the denominator. In the
original version, the denominator

.2"e ' l 'x 'a '

would be computed each t ime it appeared in a print statement, or twice
for each pass through the program. By adding the extra statement

31

.2"e ' l 'x 'a ' : 'denom"

we mere ly have to save and recal l the denominator whenever it is needed.

The ACT-III t rans la tor produces a program which follows
instructions exactly. If shortcuts a re to be introduced, the p rogrammer
must supply them. This is not a defect, since on many occasions, what
appears to be a logical shortcut may be completely wrong.

C. Transfers from Data Input

There a re many t imes when we want to read in a se r ies of
numbers , but do not know, in advance, how many there will be. The input
routines for ACT-III a re arranged so that when a data word is read, either
by an iread ' or a read' operation, and has no sign or digits (for example,
a blank word), the program t ransfers to a numbered statement which has
been set ear l ie r in the program.

The instruction which effects this t ransfer is the operator rdxit ' .
To be effective, it must be executed by the program before the input in­
struction. Then the t ransfer will be to the last statement prefixed with the
operator rdxi t ' . For example, the following program is written to read a
set of floating-point data from tape and to compute the mean and standard
deviation:

slOO' rdxi t ' s50"

0': 'n"

prev ' : ' sum"

prev ' : ' sumsq"

s75' read 'data"

prev ' + ' sum' : ' sum"

data 'x 'data '+ ' sumsq' : ' sumsq"

. l "e ' l ' + 'n ' : 'n"

use ' s75"

s50' c r ' s u m ' / ' n ' : ' s u m "

s u m s q ' / ' n ' : ' sumsq"

I608 'pr int ' sum"

1608'print' ['sqrt ' ['sumsq'- ' sum'x ' sum']']"

use'slOO'"

32

This routine uses the mathematical identity

â = (x - x)̂ = x̂ - (x)' ,

where the bar denotes averaging. Observe that we must keep t rack of the
number of data, their sum, and the sum of their squares .

The program down to statement s75' is executed once for each set
of data. It is , however, a necessary section of the program, since it
initializes the calculation. If the rdxit ' operator was not set, the program
would transfer to whatever place the last user of the machine had desig­
nated, with possibly mystifying resul t s . Similarly, if the variables n' ,
sum', and sumsq' were not set to zero, they would very probably have
unexpected values. Initialization of his program is an important respon­
sibility of each programmer .

Also, it may be observed that after all the data have been read
and the divisions performed, there is no reason to keep the sums. The
same variables are , therefore, used to keep the mean values.

Upon entering this program at statement slOO', the program first
initializes the rdxit' and the variables, and then proceeds to statement s75'
where it calls for data in floating-point format. It adds the data read in to
sum', and its square to sumsq', adds one to the count of data which have
been processed, and returns for more data. This continues until the end
of the list of values. After the last value, an extra stopcode causes the
program to proceed to statement s50', and compute and print the average
and the standard deviation. The program then re turns to try another case.

D. Miscellaneous Control Operations

1. Stop

It is frequently convenient to cause the computer to stop,
either because some emergency has ar isen in the program or because
some phase of the calculation has been completed. The operator stop'
will bring this about. The next statement can be executed by press ing the
START button on either the computer or the Flexowriter .

If the stop statement is numbered and if the statement was not
translated for tracing, the statement number will be shown in binary in the
instruction register of the computer oscilloscope. This may be useful for
determining which of several possible stops has been reached. Rather
than worry about reading hexadecimal, it is convenient to use the s ta te­
ment numbers si ' to produce a single step; s5' to produce two steps;

33

s 2 r to produce three steps; and s85' to give four steps. Other numbers
can be substituted for these to give equivalently easily recognized pat terns.

The stop operation is often useful in data input. Suppose that
one section of data is expected to be the same for a large number of runs
of the problem. To avoid reproducing these data it would be desirable to
be able to use the same tape for these data and mere ly to vary the second
section. It is unsafe to attempt to change tapes when the computer is
calling for input. A better solution is , after the orders calling for each
section of input, to insert a stop, to allow for changing to the next tape of
input data.

2. Breakpoint Jumps

Occasionally it is convenient for the operator to be able to
direct the course of the program. On computers equipped with an over­
flow logic board, this can be accomplished through the operators bkp4',
bkp8', bkpl6 ' , and bkp32'. Breakpoint 32 is ordinarily reserved for
print delays and should not be used. When one of these operators is en­
countered, the program either proceeds to the next instruction, if the
corresponding button on the console is down, or skips to the instruction
following, if the button is up. Thus, the instructions

bkp8'use 's2"

stop"

s2' read 'a"

would cause the program to stop before reading a_, if the breakpoint stop 8
button was up; if it was down, the program would bypass the stop.

On computers with a standard logic board, the breakpoint
statement is ignored if the button is down; if it is up, the computer stops.
A START COMPUTE will t ransfer to the next statement. If a t ransfer is
desi red to the indicated statement, the following buttons must be pushed:
ONE OPERATION; MANUAL; START COMPUTE; ONE OPERATION;
NORMAL; START COMPUTE.

The ability of the operator to make decisions and changes
while the p rogram is running is often convenient. It is wise to use this
ability cautiously. There is no record on the output of the computer in
which position the breakpoint buttons were set. Since this output is the
principal record of the calculation, it is dangerous to use the breakpoints
to make changes which will not be clearly reflected by the resu l t s . A
very useful, and safe, use of the breakpoints is to provide for optional
printing of intermediate resu l t s , which may be desirable if a calculation
does not turn out as expected. A dangerous use of the technique is for

34

selecting one of two methods of computing. It is too easy to neglect to
note the position of the breakpoint, so that at a later time it is not possible
to tell which calculation was performed. A more satisfactory way of di­
recting the computer to choose one of two or three alternate paths is by
inputting a dummy parameter, which is then examined by the program to
determine the course of action.

For example, suppose that at some stage of the program we
would like to be able to select either Course â (starting at slOO'),
Course ^(s tar t ing at sl25'), Course ĉ (starting at sl50'), or to continue
as before. The following program will provide this capability.

si ' bkp4'use'slO"

s65' stop"

iread'a"

slO' if a'neg'sl00'zero'sl25"

sl50'

Then, if breakpoint 4 is up, the program will stop and call for input when­
ever it comes to statement si'. The inputs listed below will cause the
corresponding Courses to be followed by the program:

Input Course Selected

- 1' Course a^

• ^ 0 ' C o u r s e ^

+ 1' Course c^

If the program is to continue as before, breakpoint 4 is in the down posi­
tion, causing the input call to be skipped the next time through.

3. Overflow Skip

In floating-point operations, overflow is unlikely. If a result
with exponent greater than 32 is generated, an error indication is printed,
and the computer stops. The same thing happens if capacity is exceeded
by the ix' or i/' operators.

Overflow can occur in integer addition and subtraction, and
in the machine language operations add', subtr', and div'. Computers
with the standard logic board stop when this happens. Computers with
the overflow logic board continue, but an internal indicator (the sign bit
of the command register) is set. The indicator may be tested, and turned
off if it is on, by the operator of low'. This operator causes the following

35

mstruct ion to be skipped if overflow has not occurred, and to be executed
if overflow has taken place since the last execution of this operator. For
example, the statement

oflow'use 's '7"

s 5 '

will cause s7 ' to be executed in case of overflow, and s5 ' otherwise.

EXERCISE 12

Write a program to compute and print a table of secants and cose­
cants of angles expressed in degrees . The table should be arranged as
follows:

Numbers of degrees Secant Cosecant

Include a blank line before every fifth degree (e.g., before 0°, 5°, 10°, . . .).

EXERCISE 13

We may approximate the definite integral

[^ f(x)dx
"'a

by the sum

(b-a) /n[(l /2) f (a) + f [a + (b - a) / n] + f [a + 2 (b - a) / n] + . . .

+ f [a + { n - l) (b - a) / n] + (l/2)f(b)] ,

where n is an integer grea ter than zero . The approximation becomes bet­
te r the la rger the value of n. Write a program for integrating a function.
Assume that there is a section at slOO' which assigns the value of f(y) to
the variable f, starting with a par t icular value assigned to the variable y.
After computing f, the program is to re turn to the statement after the
statement use'slOO". Allow a, b, and n to be inserted as problem
p a r a m e t e r s .

IX. ESSENTIALS OF A DEFINITIVE PROGRAM

During the course of writing a program, the connotations of the
words , abbreviat ions, or acronyms selected for the operators and the
var iables may appear perfectly obvious to the author. A few months later ,
however, they may appear perfectly obscure to the author or, possibly.

to another user of the same program. For this reason, it is essential that
the author provide an adequate explanation of any program in which a s ig­
nificant amount of effort has been expended.

A. Names of Variables

The ability to use any combination of up to five charac te rs eases
the task of selecting definitive names for var iables . The inclusion of a
directory is recommended in cases for which it is necessary to abbrevi­
ate or to substitute characters which are not available on the Flexowriter
keyboard.

B. Remarks on Program Tapes

It is most convenient to have this directory, as well as other
types of explanatory information, included as a part of the program and
not filed separately. The ACT-III language provides a means for incor­
porating such information directly in the program, from which it is im­
mediately available. No operator or variable name in ACT-III can contain
more than five let ters or other charac te rs . Strings of charac te rs of more
than five le t ters are interpreted as follows: if the sixth character preced­
ing the stopcode is one of the sixteen le t te rs , t idybrazenchumps, the entire
string of characters is ignored. If the sixth character is any other charac­
ter , the string is treated as a blank word. Thus, for example, if we head
our program by

Computation of the Zilch Function. John F . Smith Author',

the sixth character before the stopcode is the letter a; therefore the entire
section is ignored. On the other hand, in the program section

s i ' if d iscr 'neg 's5 ' negative discriminant means complex
roots ' ,

the sixth character before the stopcode is a space; therefore, the stopcode
is recognized. It is interpreted as the normal end-of-statement signal.
If a second stopcode had followed s5 ' , the comment would have been inter­
preted as a third stopcode, i.e., the end of the program.

In the first example, the word "Author," although superfluous,
served to exclude the program heading from recognition during program
translation. Other words may be employed for the same purpose; for
example, ending descriptions with the word "Remarks ." The words
"Program" ' and "Procedure" are also useful.

The extent to which documentation should be carr ied out will vary
with the contents and objectives of each program. In general, the governing

37

cr i t e r i a should favor too much, ra ther than too lit t le, exposition. As a
minimum, each program tape should include:

(1) Title of program;

(2) Author 's name;

(3) Date;

(4) Input required (identification of each quantity, and whether
integer or floating-point, in the order it is called for by
the program);

(5) Output produced (identification of each quantity);

(6) Breakpoint options;

(7) Procedures used, with dates. (A copy of the procedures
may well be included.)

In addition, it is usually helpful to include a brief description of how the
calculation is done, as well as any limitations on the applicability of the
program.

Remarks should be inserted in the program itself whenever there is
any possibility that another reader might benefit from an explanation of
either the need for a par t icular step or what it accomplishes.

C. Remarks on Data Tapes

It is also good practice to identify and explain data tapes. In read­
ing either floating-point or fixed-point problem pa ramete r s , only the last
eight charac te r s (including spaces and, except on the 4-mode Flexowriter ,
tabs) before the stopcode are examined. If the full eight charac te rs a re
used by the data (the first of these must be a sign), any desired r emark
may be prefixed. For example, the following are equivalent:

integer i +0000050' +50'

floating-point Em +1500000' + 1' +15' + !'

Data tapes should have the u s e r ' s name, the program with which
they a re to be used, the date, and some form of identification. Identifica­
tion of input data is often helpful.

D. Sample Problems

Another very useful item in program documentation is a sample
set of input data, labeled with their significance. Such a sample problem
not only i l lus t ra tes the use of the program, but also gives a convenient check
that the program has been properly t ransla ted and is functioning in the de­
s i red manner .

X. COMPUTER OPERATION

We have now mastered enough of the ACT-III language so that we
can write programs to car ry out many tedious calculations. It is appro­
priate, before we continue our study of the language, to describe how to
make the computer obey our instructions.

A. Preparation of Program Tapes

The first step is to convert the handwritten instructions to a form
which can be read by the computer. The LGP-30 computer accepts input
from the attached typewriter (Flexowriter), or from paper tapes by the
reader of the Flexowriter or of the Photoelectric Reader. When tapes
are read by the Flexowriter, a copy of the input is produced by the type­
wri ter . Ordinarily, it is faster and more accurate to use tape for all
input.

Tapes are prepared by typing the desired information on the Flexo­
writer (see Fig. 1). Either the Flexowriter attached to the computer or a
spare may be used. When the PUNCH lever is down, every t ime a key is
pushed, a corresponding row of up to six holes is punched in the tape.

ISTART I STOP I PUNCH I
READ I READ | ON |

y
MANUAL INPUT LIGHT

PE I COOE kHANUALl START I
ED pELETEt INPUTpuPUrel

TA
FEED

CONNECT
.OFF

: *

a [T i L D a a i i i L i i i i J c a L i i a ^

m Q C D Q Q Q Q Q Q L L l C a i i l

I SPACE I

Fig. 1. Flexowriter Keyboard

When the TAPE FEED lever is pressed, the punch feeds blank tape
until the lever is released. Every tape should begin with a leader of
10-20 in. of blank tape. This allows space for identifying the tape and
facilitates loading the tape in the Photoelectric Reader. Leaders of blank
tape are also convenient for separating sections of program or data.

Corrections can be made by either of two methods, depending upon
the nature of the e r r o r s and the promptness with which they are detected.
It is, of course, impossible to erase a set of holes in the tape. However,

39

both r eade r s will ignore any line wherein all six holes a re punched. Thus,
if detected immediately, an extraneous or an erroneous character may be
precluded from translat ion by simply punching six holes in that part icular
line. This is accomplished by rolling the tape back one space, and depress ­
ing the CODE DELETE lever on the Flexowriter . The same procedure can
be followed if several words have been typed incorrectly, provided the
e r r o r s a re detected promptly.

For more serious e r r o r s , or those discovered too late, it is more
convenient to utilize the ability of the Flexowriter to copy tapes. The pro­
cedure is as follows:

(1) Insert the incorrect tape into the reader . Depress the PUNCH
and START READ levers . The Flexowriter will then read the
tape, and type and punch it, until it comes to a stopcode. When
it reaches a stopcode, the reader will print and punch it, and
stop.

(2) Depress START READ lever to continue on to the next
stopcode.

(3) If it is desired to continue through stopcodes, without stopping,
depress the COND STOP lever . Upon nearing the place where
correct ions a re to be made, ra ise the COND STOP lever, and
the reader will stop at the next stopcode. It is also possible to
stop the reader by depressing the STOP READ lever .

(4) Type in the correct ion(s) . Then, either roll the incorrect tape
forward, or ra i se the PUNCH lever and allow the reader to
read through the incorrect portion of the tape depressing it
again when you wish to copy.

B. Translat ion

After the program tape has been punched and proofread, it must be
t ranslated. The procedure is as follows:

(1) Turn on the computer, the Flexowriter , and the Photoreader
(see F igs . 2 and 3). Depress the MANUAL INPUT lever on
the Flexowri ter . P r e s s the READER STOP button on the
Photoreader . Place the ACT-IIIA(S) tape in the Photoreader
with the printed side down. Turn the INPUT SELECTOR
switch on the Photoreader to READER.

(2) When the warmup cycle of the computer is complete (the
oscilloscope shows a pattern), p res s the ONE OPERATION
button, the CLEAR COUNTER button, the NORMAL OPERA­
TION button, and the START button.

40

IWf

NORMAL
ONE

OPERATION

MANUAL

INPUT

5T4RT

BREAK
P O I N T

32

CLEAR
COUNTER

BREAK

P O I N T

1 6

FILL
INST

BREAK
P O I N T

S

EXECUTE
INST

BREAK
P O I N T

POWER
ON

6 BIT

INPUT

POWER
OFF

TRANSFER
CONTROL

ROYAL PRECISION

• ^ _7
F i g . 2. C o m p u t e r C o n t r o l P a n e l

TAPE PUNCH

AND READER

TAPE

FEED
P U N C H

POWER
READER

STOP
READER
POWER

PfPC. REAQ

ROYAL PRECISION LGP-30
SYSTEM

F i g . 3. P h o t o r e a d e r and H i g h - s p e e d P u n c h C o n t r o l P a n e l

(NOTE: Owing to the f requency with which th i s s equence of o p e r a t i o n s is
p e r f o r m e d , it will h e r e a f t e r be a b b r e v i a t e d to; OCNS.)

All o ther bu t tons except O P E R A T E should be u p .

(3) The p h o t o r e a d e r will now begin to r e a d the t r a n s l a t o r t a p e .
While it is being r e a d , the p r o g r a m tape m a y be p l a c e d (with
the p r in t ed s ide up) in the r e a d e r on the F l e x o w r i t e r . After
the ACT-IIIA(S) tape has been r e a d , the T - t a p e is p l a c e d in
the p h o t o r e a d e r . (NOTE: In the c u r r e n t ed i t ion of the c o m p l e t e
c o m p i l e r , the T - t a p e is m a r k e d T-5 .) The ACT-IIIA(S) t ape is
rewound, and the START but ton i s p r e s s e d . After a s h o r t i n ­
t e r v a l of comput ing , the T - t a p e i s r e a d and the c o m p u t e r s t o p s .

(4) T u r n the INPUT SELECTOR swi tch to T Y P E W R I T E R . D e p r e s s
the 6-BIT but ton. If a t r a c e is d e s i r e d , d e p r e s s the TRANSFER
CONTROL but ton. DO NOT OCNS. R a i s e the MANUAL INPUT
l e v e r . D e p r e s s the START but ton on the c o m p u t e r o r , on the
F l e x o w r i t e r , p r e s s the START C O M P U T E l e v e r .

41

The program tape will now be read and translated, and the t r ans ­
lated program stored in the computer starting at location 0300.

The t rans la tor program includes tests for certain common e r r o r s
in the program, i.e., incorrect operators , unmatched brackets , or exceed­
ing the storage capacity. (A more comprehensive list of e r r o r s , as well
as the remedy for each, is included in Appendix A.) Whenever an e r ro r is
detected, the typewriter will print a notification, and the computer will
stop. For example, if the program and the data exceed available storage,
the Flexowriter will car r iage re turn and print sOOO 0000. In this case,
the program will have to be rewrit ten. If a statement number is refer red
to in the program, but is never used as a label, so that it is not defined,
the Flexowriter will execute a car r iage return and print the undefined
statement number. It will also print the location of the machine inst ruc­
tion referr ing to that statement. This will be repeated for each place
where an undefined statement number is used.

When these e r r o r indications have been given, or if no e r r o r s
have been given, the Flexowriter will execute a car r iage return, print f,
and the machine location of the last instruction of the program. It will
then print each statement number used, and the machine address of the
first instruction in this statement and, finally, the various variables used,
with their machine addresses .

C. Recompilation

Although it is possible to cor rec t e r r o r s in the course of the
translation phase, it is better pract ice to cor rec t the program tape and
recompile . In recompiling, or in compiling a second program after a
first program has been t ranslated and output, it is not necessary to r e ­
load the whole t rans la tor and T-tape. Instead, a short tape labeled with
T* and the same number as the T-tape being used may be loaded. This
rese t s the program to begin a new translat ion. Before attempting to load
the T*-tape, ra ise the 6-BIT button, and the TRANSFER CONTROL button.
After it is reloaded, re turn to Step (4) as described above.

D. Punchout of Object P rogram

After completing the translat ion successfully, it is advisable to
punch out the t ranslated program. To do this, ra ise the 6-BIT and the
TRANSFER CONTROL buttons, turn on the photoreader, turn the INPUT
SELECTOR switch to READER, then p res s the READER STOP button.
Place the ACT-III(B) tape in the reader and OCNS. When the tape has
been read completely, turn on the PUNCH on the Flexowriter , feed tape
to give an adequate leader , type an identification of the program, and
p r e s s the START COMPUTE lever on the Flexowriter . The entire p ro­
gram will be punched and printed by the Flexowriter in a form which is
not easily readable by the programmer , but is easily reloaded into the
computer.

42

The number of tape-loading operations can be minimized by p r e ­
paring a single tape which comprises the ACT-llIA(S), the T-4B, and the
ACT-IIIB and C tapes. In this event, the program punch-out procedure is
as follows. After translation is completed, depress the MANUAL INPUT
lever on the Flexowriter, raise the 6-BIT and the TRANSFER CONTROL
buttons, and OCNS. The light on the Flexowriter will i l luminate. Type
in doat2900', and press the START COMPUTE lever . When the computer
stops, turn on the PUNCH, type the program identification, and press the
START COMPUTE lever on the Flexowriter .

E. Running the Program

To run the program, a set of routines to ca r ry out the various
operations must be loaded. These routines are contained in a large tape
labeled P-4B or P-5B. To load them, turn on the photoreader, ra i se the
6-BIT and TRANSFER CONTROL buttons and all BREAKPOINTS, and
press the READER STOP button. Then place the P-tape in the reader ,
turn the INPUT SELECTOR switch to READER, and OCNS. If the t r ans ­
lated program is still in the memory when the reader stops, turn the
INPUT SELECTOR switch to TYPEWRITER, place the data tape in the
typewriter reader , depress the MANUAL INPUT lever on the typewriter ,
and OCNS. When the typewriter light illuminates, type in doat0300', p ress
the START COMPUTE lever twice, and ra ise the MANUAL INPUT lever.
The program will now be executed.

If it is desired to s tar t the program at some other numbered
statement, this can be done by finding the true address TTSS (4 digits)
from the statement directory printed after translation. Depress the
MANUAL INPUT lever, and OCNS. When the light comes on, type
doatTTSS' and press the START COMPUTE lever .

If it is necessary to reload the translated program, place it in the
photoreader after the P-tape has been read, and press the START button.
Then continue by turning the INPUT SELECTOR switch to TYPEWRITER,
and so on. However, in this case, OCNS and doat0300' are not necessary
after the program is read in.

F . Checking the Program

The complete checking of a program is difficult and a task requi r ­
ing skill. The degree of checking will vary with the importance and com­
plexity of the program, and the patience and ingenuity of the p rogrammer .
Ideally, every alternative path through the program should be tested to
verify that it produces cor rec t resul t s . This can often be done by running
the program on several sets of input data with known resu l t s .

43

1 • E r r o r Indications at Run Time

Theoretically, a carefully checked program should run with­
out interruption and should produce the desired resu l t s . This is rare ly
the case . To the contrary, past experience has shown that many e r r o r s
in computer fundamentals may be detected painfully rapidly. The major­
ity of these e r r o r s can be related to inadvertent instructions to perform
illegal operat ions. For example, dividing by zero, or computing the
logarithm or the square root of a negative number.

Whenever an illegal operation is detected, the typewriter will
immediately execute a carr iage re turn and type the letter e, followed by
a number, and the operator symbol in question. It will then perform a
second car r iage re turn and type the number of the last labeled statement
executed, the location of the erroneous instruction, and the right operand
of the operator . The lat ter will be interpreted as an integer and as a
floating-point number. The types of e r r o r s associated with the various
operators and the corresponding remedial actions are described in
Appendix B.

Even if no illegal operations are detected, the program may
still fail to produce the correc t result . This, too, indicates an e r ro r which
must be located and corrected.

2. Use of Intermediate Output

In locating e r r o r s , it is often possible to get an idea of what
may be wrong by studying the output. If the breakpoint options have been
used ingeniously to provide extra output of intermediate values, they may
be helpful in finding where the program started to go wrong, and what sec ­
tions a re apparently cor rec t . If this device and a careful study of the
original program are unsuccessful, tracing may be employed.

3. Statement Stopping

It will be recal led that in translating the program, the TRANS­
FER CONTROL button determined whether the program was to be t r ace -
compiled or not. At run- t ime when the TRANSFER CONTROL button is
up, a t race-compi led program runs the same way as one which is not
t race-compiled. If the TRANSFER CONTROL button is down when enter­
ing the program, an opportunity is offered for instructing the program to
stop at a selected statement number. The operating procedure is as
follows: Immediately after entering the program, with the MANUAL IN­
PUT lever down on the Flexowriter and the TRANSFER CONTROL button
down, the computer will stop with the Flexowriter light lit. If a + followed
by a statement number (without the s) is typed in, the TRANSFER CON­
TROL button is ra ised, and the START COMPUTE lever is pressed, the

44

program will run at full speed and stop just before executing the s ta te­
ment specified. Press ing the START COMPUTE lever with the MANUAL
INPUT lever down will call for a new statement number. To run without
stopping, type in "run." This feature of the ACT-III subroutine system is
useful if it is known that the program is all right as far as a cer ta in s ta te­
ment and that only the section after this statement requires examination.

4. Tracing

Tracing is a time-consuming task. Moreover, it produces an
inordinate amount of output, only a small amount of which is significant.
However, tracing does allow the programmer to follow in detail the course
of the calculation, to verify each step by hand calculation, and thus to lo­
cate his e r r o r s .

If the program has been trace-compiled and the TRANSFER
CONTROL button is depressed after entering the program, the following
print-out will occur for each statement:

Carr iage return

Statement number (000, if statement is unnumbered)

Machine address of the first instruction of the statement

Result of statement (interpreted as an integer and as a
floating-point number).

XL USE OF LIBRARY PROCEDURES AND SUBROUTINES

Procedures and subroutines are blocks of programming which are
used repeatedly to perform complicated sets of operations, for example,
to evaluate a complex function, to compute the root of an equation, or to
invert a matr ix at several places in a program. These operations a re
not provided for directly in the ACT-III language; however, a mechanism
is provided whereby procedures from other sources may be incorporated
in a particular program. The programmers at most LGP-30 installations
maintain a l ibrary of procedures for calculations common to their r espec­
tive organizations, and a number of multiple-use procedures a re available
through POOL. (The justification of such a l ibrary at each LGP-30 instal­
lation cannot be overemphasized.)

This section will discuss the method of using procedures which
are available. (The rules for writing new procedures a re discussed in
Section XVII.)

A procedure obtained from a l ibrary will, ordinarily, contain
special instructions for its use. Among others , these instructions may

45

include call s tatements to be written in the main program; what the argu­
ments stand for, whether they are integers , floating-point numbers , or
sets of numbers; and nature of the resu l t s . The discussion here is not
intended to supersede these special instructions, but to give a more gen­
eral description of procedures and their uses .

Multiple-use sections of programming may be classified by the
nature of the information which they take in and the information which
they produce. The simplest type, for example, is a routine to compute the
hyperbolic tangent of yj the input required is limited to the value of y. A
more complicated procedure might take a block of data, or several blocks,
and produce one or more blocks of data, for example, a procedure which
computes the sum of two ma t r i ces . Another class of procedures requires
a function for one or more inputs. The output might be a single number, or
one or more blocks of numbers . Examples a re procedures to find a root of
an a rb i t r a ry function, to integrate a function, or to solve a set of differential
equations.

A. General Call for Procedures

In the ACT-III language, the general call for a procedure consists
of a statement, for example,

ca l l ' bee r ' a rg 'b la tz ' a rg ' s l i t z ' a rg 'bud" ,

where beer ' is the name of the procedure; blatz ' , s l i tz ' , and bud' a re the
arguments , which may be single numbers or a r r a y s . One or more of the
arguments may be assigned for output or may be changed to a new form
by the procedure . The meaning of the arguments and the order in which
they are l isted will be specified in the description of the procedure.

B. Special Calls for Procedures

1. Functions of One Variable

For procedures in which a single number is required or which
produce a single number, a special call can be used to accelerate the com­
putation. This consists of calling the procedure without any arguments ,
immediately after a statement which leaves the argument in the accumula­
tor . Any expression with a resul t or an assignment statement will accom­
plish this .

Subroutines which produce a single number may leave with
this number in the accumulator . To assign this result to a variable or to
use it in another ^vay, the operator prev' may be used. For example, the
sequence of programming

46

y'+'z"

call 'zilch"

prev ' : 'u"

will assign the value of the Zilch function of y + z to the variable u.

2. Functions as Pa ramete r s

When a procedure, such as an integration routine, requires a
function as input, it is ordinarily written to include a subroutine to cal­
culate the function, or to call for such a subroutine to calculate the func­
tion, or to call for such a subroutine immediately following the procedure
call . In order to return to the basic procedure, the initial calling sequence
must include a procedure-recal l statement. The recall statement consists
of the procedure name and the suffix 2'; the arguments are omitted.

As an illustration, suppose we have a procedure (root) which
requires as input a tolerance (tol), an initial guess (y) of the value of the
root, and a function (fct). The procedure is to re turn with the accumula­
tor containing the value of the function fct(y) for the value of y originally
in the accumulator. The calling sequence for this procedure might be

y0': 'y"

ca l l ' root 'a rg ' to l ' a rg 'y"

call 'fct"

cal l ' root '2" .

C. Translation of Procedures

It is essential that a procedure be translated before any call of
that procedure. Failure to meet this requirement is not detected by the
translator and is the responsibility of the use r . A safe rule is to t r a n s -
late all procedures before the main program.

After loading the ACT-IIIA(S) tape and the T-tape, and changing to
typewriter input, 6-BIT mode, the first procedure tape is placed in the
Flexowriter reader ; t ranslated procedures obtained from a l ibrary a re
generally provided on separate lengths of tape, the last operator of which
is wait ' . When the tape reaches the wait' instruction, the t rans la tor stops
to allow the tape to be changed. Unless special steps a re taken, proce­
dures are not t raced, nor a re their statement numbers and variables
printed in the directories produced at the end of translation.

A final note of caution regarding identification of l ibrary proce­
dures , part icularly from installations where new procedures a re under

47

development. In some instances, a procedure with a given name may
exist in several different versions which are not entirely equivalent.
Therefore, a program which uses l ibrary procedures should include copies
of all procedures which it requires or, at least , a reference to the specific
procedures that a re used.

XII. ARITHMETIC OPERATIONS WITH INTEGERS

Although ari thmetic operations are performed more frequently
with real numbers , the ACT-III language provides facilities for perform­
ing the corresponding operations with integers . We have already met
integers as program constants and as problem paramete r s , and have
learned how to read and write them. It is now appropriate to describe
the basic and the special integer operations that are available.

The pr imary application of integers is for such housekeeping
operations as counting, subscr ipts , and switching. However, their funda­
mental charac te r i s t ic , that they are represented exactly in the computer,
without e r r o r due to roundoff, or conversion to binary fractions, means
that they can be used to avoid accumulating this e r r o r .

A. Basic Integer Operations

The basic integer operators are distinguished by the prefix let­
ter i, followed by the symbol used for the floating-point operator . Thus,

i+', i- ', ix', and i / '

are the operators for adding, subtracting, multiplying, and dividing integers .

In division, the statement

d ivd ' i / divr ' : 'quot"

produces a quotient and a remainder of the same sign as the divisor. The
remainder is stored as a special variable , r emdr ' . It can be used later in
the program until it is replaced by the remainder from a subsequent divi­
sion operation.

For the multiplication of small integers (with product less than
134,217,727 in magnitude), a special operator nx]̂ is provided. This is
faster than the operator ix' and does not require a special subroutine.

48

EXERCISE 14

Any common factor of two integers is also a factor of the remain­
der when the larger of the two is divided by the smal ler . With this knowl­
edge, construct a program to print the greatest common denominator of
two integers input from the keyboard.

B. Special Operations

Two special integer operations are also available. The operator
labs ' , with only a right operand, produces the integer which is the abso­
lute value of the integer right operand. The operator ipwr' , with integer
right and left operands, produces the integer which is the left operand
raised to the right operand power. If the right operand is negative, left
operand zero gives an e r ror stop; left operand one gives one; and left
operand greater than one gives zero.

EXERCISE 15

Write a program which will read a set of positive and negative
integers from the keyboard, and select the one which is largest in mag­
nitude and the one which is smallest in magnitude. Upon exiting from the
read phase, the program is to print max for the integer with largest mag­
nitude, min for the integer with smallest magnitude, and (max)"^-'-'^.

C. Conversion between Integer and Floating-point Numbers

There are several operations which involve both integers and
floating-point numbers. Three operators are available to effect conver­
sions. The operator flo', with integer left and right operands, produces
a floating-point number which is equal to 0.1 raised to the left operand
power multiplied by the integer right operand. Thus,

0'flo'123' would yield .123"e'3 '

l 'flo'123' would yield .123"e'2'

['0 ' i - ' l '] ' f lo '123' would yield .123"e'4'

Conversion of floating-point numbers to integers may be accom­
plished by either of two operators , unflo' or fix'. Both operators require
an integer left operand and a floating-point right operand. If the left
operand is denoted as n, it converts the right operand, multiplied by lO'^,
to an integer. In the case of unflo', the number to be converted to an
integer is rounded after scaling. In the case of fix', the next smal ler
integer is taken (the next larger in magnitude, if the number is negative).
To i l lustrate , the following resul ts would be obtained with the right
operands and operators indicated.

49

y

15.734

1.826

2947.301

-1.3275

-1.5275

0' unflo'y'

16

2

2947

- 1

-2

EXERCISE

O'fix'y'

15

1

2947

-2

-2

16

2' unflo'y'

1573

183

294730

-133

-153

Give the resul ts of

O'unflo'y', O'fix'y', 3'unflo'y', 3'fix'y', ['O'i- '2'] 'unflo'y', ['0 ' i- '2 '] ' f ix 'y '

on each of the following numbers , ca r r ied in real (floating-point) form:

a.) 0.51635 e.) 51.6354

b.) 0.051635 f.) 51.0000

c.) 0.00051635 g.) -0.5163542 x 10"^

d.) -51.6354 h.) 516,354,200.0

D. Scaling Floating-point Numbers

The final operation which has a fixed-point operand is the operator
xlOp'. It consists of a floating-point left operand, a fixed-point right oper­
and, and produces a floating-point resul t . This operator multiplies the
left operand by the power of ten given by the right operand. It can be used
for scaling if numbers become la rger in magnitude than 10 or smal ler
than 10-^^.

EXERCISE 17

(A) Write a program using floating-point ar i thmetic to calculate
and print the floating-point representat ion of the numbers from 0 to 100.
Print the numbers with format number 1709', five numbers to the line.

(B) Write a second program to compute these numbers by integer
ar i thmetic and floating the integer just before printing.

If possible, t ranslate and run both p rograms .

50

XIII. SUBSCRIPTED VARIABLES

In many problems, we are interested, not in single numbers , but
in a r r ays or ordered groups of numbers . For example, a complex num­
ber is usually character ized by two real numbers , its real and its com­
plex par t s ; a vector in n-dimensional space may be character ized by its
n components; a polynomial of degree n in one variable may be specified
by its n + 1 coefficients; a system of m homogeneous linear equations
in n unknowns may be summarized by the m X n matr ix of coefficients.
In all these cases , it would be more convenient to refer to the whole
a r r ay of numbers by a single name and to use some device to select indi­
vidual elements. ACT-III provides such a device: subscripted var iables .

A. Dimension Statements

In handling an a r ray , the t ranslator must be informed how much
storage to set aside for the elements of the a r ray . This is done by the
dimension statement, which has the form: dim', followed by the names
and the maximum number of elements in the respective a r r a y s . An exam­
ple of a dimension statement is

dim'polyl '25'poly2'10'mtrix'26".

Several a r rays may be defined by a single dimension statement, and a
program may contain several dimension statements; however, each a r ray
must be defined by a dimension statement before it is refer red to. If an
a r ray or index is given the same name as a previously named variable,
the previous definition is erased from the symbol directory. However,
all parts of the program which have already been translated will refer to
the old variable.

B. Single Subscripts

Elements of a one-dimensional a r ray , such as a vector or the co­
efficients of a polynomial, are referred to by the a r ray name, followed by
a stopcode. This, in turn, is followed by either a constant integer or a
non-negative integer variable, which is the subscript, or index. If the
subscript is a variable, a statement is required to the effect that it is
to be used as an index. This statement is of the form

index'i ' j 'k".

The first element of an a r ray is referred to by the a r r ay name
and the index 0, the second by the a r ray name with index 1, and so on.
Thus the expression a'O' refers to the first element of the a r r a y named a.
If the dimension of a is 26 or more , a '25' refers to the 26th element. The
elements of a are actually stored in reverse order . If the a r r ay a is stored

51

in locations 3000 to 3026, the element a'O' is in location 3026, and a'26' in
location 3000. If an index is used greater than the dimension of the ar ray ,
an element is selected from the next-named a r r ay or simple variable. On
the other hand, if a variable index has not been assigned a value before it
is used as a subscript , what Bowlden descr ibes as "mysterious resu l t s"
may occur.

As an example of the use of subscr ipts , let us evaluate a polynomial
of degree n£50, the coefficients of which are to be read into the a r ray poly.
The coefficient a ' i ' is the coefficient of y^. The following program will
accomplish this:

rdxi t ' s7"

dim'poly '51"

index'j"

s U ' 0 ' : ' j "

i read 'n"

n ' i+ ' l ' : ' l im"

s i ' read 'poly ' j"

j ' i + ' l ' : ' j "

s4' i f ' [' j ' i - ' l im '] 'neg ' s l "

s7' read 'y"

l ' i+ 'n ' : ' j "

poly ' j ' : 'value"

s2' j ' i - ' I ' : ' j "

t r n ' s 3 "

value 'x 'y ' + 'poly ' j ' : 'value"

s5 ' u se ' s2"

s3 ' c r ' l608 'p r in t 'va lue"

u s e ' s l l ' "

EXERCISE 18

Assurae that a r r ay a, of n elements , contains the elements aj,
0£jSn- l , of an n-dimensional vector a; also that a r r ay b contains the cor­
responding elements of a vector b. Write a program to compute and print
the scalar product (sp) of a and b:

sp
11- 1

52

EXERCISE 19

Construct a program to store the coefficients of the polynomial
prod, which is the product of the polynomials poly 1 and poly 2. Assume
that poly 1 and poly 2 a re of degrees nl and n2, and that the coefficients
a re stored in positions corresponding to the exponent.

C. Incremented Indexes

It is often desirable to refer to sets of elements of an a r r ay which
are in some fixed relation to each other. In the ACT-III language, if an
a r ray name is followed by an index name and an integer program constant,
in either order , the sum of the index and the constant is taken as the index.
For example, if i = 1,

a r ray ' i ' 25 ' = a r ray '25 ' i ' = a r ray '26 '

provided, of course, that a r ray has a dimension of 27 or more .

Any two variables, or two variables and a constant, or single
variable and an integer constant, which are not separated by an operator
are interpreted as a subscripting of the f i rs t -named variable. If the
second variable has not been declared as an index, an e8 e r ro r stop will
occur. If the second variable has been defined as an index, the program
will be interpreted as written, even if it was not so intended.

EXERCISE 20

The Bessel function Jj,(y) obeys the recurrence formula

Jn.,(y) = (2n/y)Jj,(y) - Jn+i(y) .

Assume that values of Jn(y) and Jn+i(y) are given. Then write a program
to compute the values of Jo(y), Ji(y),--• Jn+i(y) and store them in the a r ­
ray J, with J'O' = Jo(y), etc.

D. Double Subscripts

Two-dimensional a r r ays , such as mat r ices , are defined by the
same dimension statement as is used for one-dimensional a r r a y s . How­
ever, the elements of such a r rays are defined by a double-index statement
of the form

dbind'ij".

This statement defines a two-element a r r ay i j , with elements ij'O' and
i j ' l . Now, after the (integer) number of columns has been placed in

ar ray 'O ' , the value i has been placed in ij'O', and the value j in i j ' l ' , the
statement a r r a y ' i j ' will refer to the element in row i and column j of the
a r ray .

EXERCISE 21

Write a program for finding the product of an (n X n) matr ix by an
n vector . Include dimension statements , permitting n to be as large as 10,
and the necessa ry index and double-index statements .

53

54

XIV. ITERATIONS

In using subscripted var iables , as well as in a number of other ap­
plications, we frequently find outselves performing an operation for some
value of an integer, which we will call the controlled variable, then chang­
ing the integer by a given amount, and repeating the operation until the in­
teger reaches some limit. We did this twice in our polynomial evaluator
in Section XIII: the f irs t loop was used to read in the values of the coeffi­
cients (statements si ' through s4'); the second loop evaluated the polynomial
(statennents s2' through s5').

Since this type of calculation occurs so frequently, ACT-III provides
a special way to ca r ry it out. In the latest version (T-5) of the compiler, a
loop of this kind is created by labeling the first statement of the loop (after
initializing the controlled variable and any other variables needed) and plac­
ing at the end of the loop the statement

for 'controlled var iable 's tep ' increment 'unt i l ' l imit ' r peat' sX".

In this statement, the name of the controlled variable is inser ted between
for' and step' : the amount by which it is to be changed is inser ted between
step' and until ' ; the limit which is to be passed to leave the loop is inserted
between until ' ; and rpeaf ; and sX' denotes the statement number of the start
of the loop.

The controlled variable must be an integer. It may be either a
simple integer variable, or a subscripted variable such as one component
of a double index. The increment and limit may be integer program con­
stants, simple variables, subscripted variables , or ari thmetic expressions.
The iteration terminates when the value of (l imit-controlled variable)
X increment becomes negative. There are no res t r ic t ions on sign of the
increment or of the limit.

The for' statement

for 'cvar ' s tep 'de l ta 'unt i l ' l imi t ' rpeaf sX"

produces essentially the same object program as would

del ta ' : ' temp"

prev ' i+ 'cvar ' : ' cvar"

i f ' [' [' p rev ' i - ' l imi t ' i - ' t emp '] ' ix ' t emp '] 'neg ' sX" .

This object program insures that a zero increment will not cause a per ­
petual loop.

55

There is no special instruction in the ACT-III language for i terating
with a floating-point controlled variable. On the few occasions when this is
desired, two al ternat ives are possible. The first is to produce the desired
floating-point controlled variable by floating an integer with the proper
scaling and using a for' statement to increment the integer representat ion.
The second is to write a section of programming equivalent to that produced
by the for' s tatement, but using floating-point ar i thmetic . For example, sup­
pose that it is requi red to evaluate some function fct at intervals of 0.01 in the
independent variables y. Two ways of accomplishing this would be

0': 'y"

s i ' 2'flo'y"

call 'fct"

prev ' : ' temp"

cr ' 1602'iprf y"

1608'print ' temp"

for 'y ' s tep ' 1'until' 100'rpeaf s 1",

0': 'y"

s i ' y ' : ' t emp"

call 'fct"

prev ' : ' temp"

cr ' 1602'dprf y"

1608'prinf y"

y' + ' . l"e- ' r:'y"

prev ' - ' . 1005"e '3"

t r n ' s l "

The f irst form is preferable for severa l reasons . F i r s t , it avoids the in­
accuracies due to buildup of roundoff e r r o r in repeated addition of 0.01.
Secondly, floating-point ar i thmetic is slower than integer ar i thmet ic .
Finally, the last loop would make no provision for the possible vanishing of
the increment if it were allowed to vary. A loop with a zero increment is
not an uncommon form of programming blunder.

Loops may be used within loops to any desired depth. If a loop is
entered by a use ' statement to some statement inside the loop, the con­
trol led variable may not have been properly initialized. Caution is indicated.

56

EXERCISE 22

Write a program for reading the elements of a mat r ix with m rows
and n columns into an a r ray A. The m a t r i x will always obey the condition
m X n £ 225.

EXERCISE 23

If A is an (m X n) matr ix and B is an (n X q) matr ix, then the prod­
uct C is an (m X q) matr ix, the (i,j)th element of which is given by

n
*^i.j = Z ^ i k ^ j -

k=i

Write a program for finding the product of two ma t r i ces .

EXERCISE 24

The binomial coefficients (j obey the law

/n+ 1̂ / n \ / n \ ,
\ m / \ m / Vm - 1/

where

and

f ^ j = 0 if k > n or if k < 0

:)

Use this information to write a program for computing the binomial coef­
ficients of order nu.

EXERCISE 25

Write a program for computing nl = l X 2 X 3 X . . . X n .

XV. ADVANCED CONTROL OPERATIONS

In Section VIII (Elementary Control Operations) we learn to use the
flow-directing operations use ' , t rn ' , if, andbkpX'. With these operators in
mind (a review might be necessary) we will now proceed to more advanced
control operations.

57

A. Recalling a Subroutine

In lieu of a procedure, the same section of programming or sub­
routine can be recal led at several places in the program. To do this, the
last instruction in the subroutine must be labeled accordingly. For ex­
ample, the statement

r e f s E ' u s e ' s B "

may accomplish this purpose, provided sE' is the label of the last s ta te­
ment of the subroutine and is of the form

sE'go to'sO",

and sB' is the label of the first statement of the subroutine. After the
statement

re t ' s E ' u s e ' s B "

is executed, the statement sE' is changed to use ' the statement following
use ' sB" .

B. Setting Switches

Switches can be set to enable decisions to be made on the flow of a
program at a place other than the place where the flow is to be changed.
For example, it may be desired to change the course of a loop depending
upon some variable which does not change during the loop. It would then
be wasteful to tes t this variable each time the choice had to be made in the
loop. The statement

se t ' sE ' to ' sX" ,

where sE is sE'go to'sO", replaces sE by use 'sX" and goes on to the
statement following the set ' statement.

A go to' s tatement must be prese t before it is encountered in
executing the program. The operator go to' is not equivalent to the operator
use ' . Both are t ransla ted into an unconditional transfer (u) instruction in
the object program. However, in the statement

use ' sO'

sO' will be interpreted as the name of a variable and will be assigned a
location in the variable storage area . In the statement

go to' sO'

58

sO' will be interpreted as the name of the statement itself, and the object
program will contain an unconditional transfer to the instruction itself. If
this instruction is executed before the instruction has been modified by
either a set ' or re t ' statement, the computer will enter a one-word loop.
The COMPUTE light will remain on, but none of the reg i s t e r s on the osci l ­
loscope will show any change. This behavior guards against the undeter­
mined actions which might take place if a switch were entered before it had
been set.

EXERCISE 26

A program to compute the Zilch function of the resul t of the last
operation is located between statements slO' and s i 2 ' . A program to com­
pute the Nussbaum function is located between statements s20' and s l 2 ' .
In computing the function u(y), the initial value of y is destroyed. If the
initial value of y is positive, it is desired to compute the product
Z(w) X N(u); if the initial value of y is negative, the product Z(u) X N(w);
or if the initial value of y is zero, the product N(u) X N(w) is to be com­
puted. Use switches to accomplish these resul t s , remember ing that the
value of y will have been changed before the functions N and Z can be
computed.

C. Indexed Switches

A final device for changing the course of the program depends upon
the subscripting. If i has been defined to be an index and if the statement
before sT' has the form

use ' sE 'use ' sD 'use ' sC 'use ' sB 'use ' sA" ,

the statement

use ' sT ' i "

will t ransfer to sT' if i = 0; to sA' if i = 1; to sB' if i = 2; to s C if i = 3; to
sD' if i = 4; and to sE ' if i = 5. If i is outside the limits 0 < i £ 5, unex­
pected resul ts may occur.

Only variable subscripts may be used in this way. The statement

u se ' sT '2 '

will t ransfer , not to sB ' , but to statement (T - 2). Similarly, the statement

use ' sT ' i ' 2 '

will t ransfer to the i th-order preceding statement (T - 2).

59

Subscripted statements cannot be used after go to' or after use ' in a
r e f s X ' u s e ' s Y " statement, or after zero ' in an i f statement.

EXERCISE 27

On cer tain occasions, the computer may be instructed to compute
several problems without interruption. Accordingly, the data tape must con­
tain not only the data for the f irs t problem, but that for several problems,
not necessar i ly of the same type. In our exercise , we may wish to t rea t
sets of data on tape in any of four different ways. Instructions for the first
process s ta r t at s lO' , those for the second at s20', those for the third at
s30', and those for the fourth at s40'. Upon completion of each process ,
the program t ransfers to slOO.

Write a section of programming starting at slOO'. Give a sample
input for the processing of five sets of data: the first by process 1; the
second by process 3; the third by process 2; the fourth by process 4; and
the fifth by process 2. Also, instruct the computer to stop after the fifth
set has been processed.

D. Calling Procedures

The call ' operator used for calling procedures has the same effect
as the statement

r e f s P ' u s e ' s (P + 1)",

where s P ' is the f i rs t instruction of the procedure and s(P + 1) is the second.
Unlike the r e f u s e ' statement, ca l l 'proc ' can have the address modified by a
constant subscript . Thus, the statement

ca l l 'proc '2"

will place the re turn address in the second instruction before the beginning
of proc ' , and will t ransfer to the f irs t instruction before it. This technique
is useful when it is necessary to leave and reenter a procedure.

XVI. SPECIAL OUTPUT AND INPUT

The essent ials of a definitive program (see Section IX) emphasize
the l iberal use of explanatory comments in the program itself and, par t icu­
larly, the assignment of descriptive labels to the input p a r a m e t e r s . The
same applies to output. Output is more likely to be r e fe r r ed to long after
the details of the program which produced it have been forgotten.

Although proper planning of format can do a great deal toward
clarifying output, alphabetic text is by far the most effective way of

60

explaining the output layout. ACT-III provides two operators for producing
output of all the charac te rs and functions of the Flexowriter keyboard.

A. Programmed Alphabetic Output

A statement consisting of the operator daprf followed by a sequence
of charac te rs and spaces, each separated by stopcodes, will cause the char­
acters appearing after the operator to be printed. If it is desired to produce
the typewriter control functions, the following mnemonic codes must be used:

lower case I d '
upper case uc2'
color shift color '
carr iage return c r4 '
backspace bs5 '
conditional stop stop'
apostrophe ap'
tab tab6'

For example, the statement:

daprf c r4 ' t ab6 'uc2 'E ' l c l ' x ' a 'm 'p ' l ' e ' 'o ' f 'uc2'D'lc 1 ' i ' r ' e ' c ' f 'uc2'

A ' l c l ' l ' p ' h ' a ' b ' e ' f i ' c ' 'uc2 'P ' lc 1 ' r ' i ' n ' f i ' n 'g"

when executed would produce the output

Example of Direct Alphabetic Printing.

The daprf operator produces two instructions for each character
and thus can consume a large amount of object program space; however,
daprf is fast and simple if the space can be afforded.

B. Alphabetic Output and Input of Coded Information

A second alphabetic output operator, aprf , requires less program
space and prints coded alpha-numeric information which is stored as a
variable. Up to five characters or typewriter control functions can be
stored as single variable. The variable may be subscripted. For example,
the statement

apr f alpha"

will cause the alpha-numeric contents of alpha to be printed. If, by e r r o r ,
alpha does not contain coded alpha-numeric information, it will be inter­
preted as alpha-numeric data, regard less . If some of the charac te rs are
not acceptable to the Flexowriter , a print stop may occur. If the variable
is a negative number, nothing will be printed.

The alpha-numeric information in the variable may be inserted by
the operator aread ' , followed by the name of the variable in which the alpha­
numeric information is to be stored. When this statement is executed, a
single word is read from the tape, containing up to four characters of alpha­
numeric information in the special code given in Appendix F .

C. Repeated Alphabetic Output

The operator r e p r f can be used to print a consecutive string of
identical charac te rs - for example, a line of periods to separate cases of a
problem - or to car r iage return to the next page. The operator has an in­
teger left operand, giving the number of times the character is to be printed,
and a right operand which is the character , or the operation to be repeated.
If the left operand is negative, nothing will be printed. For example, the
statement

5 ' r ep r t ' c r4"

would produce five carr iage re turns . The r ep r f operator with its operands
must form a separate statement.

D. Compatible Output

It is occasionally helpful to punch output on tape in a form which can
be accepted later as input to the computer. If it is desirable that the output
be legible to the p rogrammer , the operators punch' and ipch' cause the
right operands to be printed (and punched if the punch is on) in the form used
for floating-point and integer problem paramete r s , respectively. The num­
bers being output must obey the res t r ic t ions on problem paramete r s . In
part icular , if the right operand for ipch' has more than seven digits, an e3
e r ror stop will occur.

E. Hexadecimal Output and Input

If it is unnecessary for the programmer to understand the inter­
mediate data, as , for example, if the output from one program is to be
processed by another, hexadecimal output may be used. The operators are
hxpch' and rdhex' . The former causes the right operand to be punched out
in hexadecimal format; the lat ter causes a hexadecimal word to be read and
assigned to the right operand. Hexadecimal input and output are faster and
more accurate than decimal input and output, since there is no need for
binary-decimal conversion, which is slow and inexact.

F. Read and Float

Occasionally only floating-point operations may be requi red on a
number which is given in integer form on the data tape. This may be ac ­
complished by the two statements:

62

i read ' temp"

j ' f lo ' temp' : ' f loat" .

These statements would read an integer from the Flexowriter or reader ,
store it in temp' , then convert it to a floating-point number equal to temp'
multiplied by (O.l)J, and store the resul ts in float'. The same resul t can be
obtained by the single instruction

j ' rdflo 'f loat".

EXERCISE 28

Write a program and include any input data necessary to produce
the following output format:

The first line of each page of output is to be labeled with the p ro­
g r a m m e r ' s name and the date. (This information is to be read in coded
form from tape.) The second line is to contain the run number and the page
number. (Initial values are to be read from tape; subsequent values are to
be assigned consecutively.) The resul ts for each run are to be displayed in
sets , each set consisting of three lines of data followed by a blank line. The
number of sets is variable. Each run is to s tar t on a new page. The printed
page size should measure 84 spaces wide and 66 lines long.

XVII. WRITING NEW PROCEDURES

Eventually many programmers will want to write their own pro­
cedures, either because they need a specialized set of programming which
requires more complicated input and resul ts than can be provided by the
re t ' use ' statement, or because they v/ish to contribute to the l ibrary.

A. Basic Requirements

Each procedure requires an enter ' statement, at least one exit'
statement, and an end" statement. The t ranslator includes tests to deter­
mine that each end" statement has been preceded by an enter ' statement,
that an exit' statement occurs between each enter ' and end" pair , and that
a new enter ' statement is not made before any previous procedure has been
ended. Fai lure to observe these conditions will cause an e4 e r r o r printout.

Ordinarily, a procedure communicates with the remainder of the
program through the resul ts of the last operation before entering and leav­
ing it, and by its arguments. Statement numbers may be duplicated between
a procedure and the main program. Names of variables also may be du­
plicated, exceptfor variables named before the operator local ' , if it appears
(see Section D, Global Variables).

Each procedure is prefaced by the operator enter ' , followed by the
name of the procedure, and then by the names to be used for the arguments.
When the procedure is called, these names will be replaced by the names in
the procedure call. The enter ' statement may be preceded by a statement
consisting of stop' operators , and of use'O' phrases .

The operator exit' is used to return from the procedure to the main
program. It may be used at any place within the procedure.

The operator end" designates the last statement of a procedure.
When this statement is read, all statement numbers and variables local to
the procedure are e rased from the directory, and can no longer be re fer red

B. References to Arguments

The arguments specified in the procedure call may be a r r ays . With­
in the procedure body, all the arguments must be re fer red to as a r r ays .
Even an argument which is actually a simple variable must be re fer red to
as an a r ray of dimension 1, with the subscript 0 stated explicitly. For ex­
ample, in the Zilch procedure with entry statement

enter 'z i lch ' sva r ' a r r ay"

the argument svar ' is a simple variable. Within the procedure, svar ' must
be re fe r red to as svar 'O' .

The procedure body must include all necessary definitions of a r rays ,
single indexes, and double indexes for the quantities which are used inside
the procedure.

C. Temporary Exits from a Procedure

If a procedure, such as a quadrature routine or a differential equa­
tion routine, requi res a function as an argument, the statement before the
enter ' s tatement may be used. The call ' operator places a re turn transfer
to the statement following the call ' statement in the first order of the p ro­
cedure being called and t ransfers to the second order . Since SX'i' is the
ith location before SX', the statement

ca l l ' s ub ' l "

occurring somewhere inside the procedure sub' will place the address of
the next statement in the location one preceding the beginning of the pro­
cedure, and will t ransfer to the f i rs t instruction of the procedure, which
re turns control to the statement following the subroutine call. To return
to the procedure where it was left, the statement ca l l ' sub '2" will place
the r e tu rn address in the second location before sub' , and will t ransfer

64

to the first instruction before the procedure. The ca l l ' sub ' l " statement
inside the procedure has already placed the re turn address in that loca­
tion. For the return addresses to be useful, they must be inserted into
t ransfer instructions. These may be produced by inserting one use'O'
phrase in the statement preceding the enter ' statement for every t ransfer
to be made.

The exit' statement is ineffective if the procedure has been left p re ­
viously by the technique described above. Instead, the final exit is made by
the statement use 'sub'n", where n is the subscript used for the last cal l '
sub'n" instruction to return to the subroutine from the main program.

If an address was not set in location sub'n+1' by a cal l 'sub'n + l",
or a set 'sub 'n+1", before the statement cal l ' sub 'n" or use 'sub 'n" , the
program will usually stop in track 62.

The statement before the enter ' statement can also be used to store
parameters needed by both the procedure and the main program. In this
case, a stop' in the statement before the enter ' statement will r e se rve one
storage location.

To i l lustrate, let us suppose that the procedure Zilch requi res one
intermediate exit to provide a function value, and one temporary storage to
be available to both procedure and main program. The beginning of the
procedure might be

stop'use 'O'use'O"

enter 'z i lch".

The intermediate exit would be made from within Zilch by the
statement

ca l l ' z i lch ' l " ,

the return to Zilch by

cal l 'z i lch '2",

and the final exit by

use 'z i lch '2" .

The variable would be refer red to as z i lch '3 ' by either the main program
or the procedure.

65

D. Global Variables

The latest version of ACT-III allows an exception to the rules that
all variables introduced in a procedure are local to that procedure, and
cannot be re fe r red to from outside the procedure, and that a procedure can­
not refer to any variables defined outside the procedure. If the operator
local' appears in a procedure after the enter ' statement, all variables named
between the enter ' operator and the local' operator are made nonlocal or
"global," i .e. , they have the same significance inside and outside the pro­
cedure. If the local ' operator is followed by other names in the same s ta te­
ment, they are interpreted as a continuation of the parameter list from the
enter ' statement. In this case, only a dim' statement can appear between
the enter ' statement and the local' operator.

Once a variable name has been identified as global, it remains glo­
bal for all procedures t ranslated thereafter. (Any other statement t r a n s ­
lated before a procedure would require a jump to the main program and
will resu l t in an e r r o r stop when the end" statement following the procedure
is translated.) For example, in the following sequence of programming:

enter 'z i lch"

d im 'a '1 'b ' l ' c ' l " a, b, and c are global var iables '

local 'u 'v 'w" u, V, and w are the formal pa rame te r s '

s i ' a ' : ' r " r is local to zilch procedure '

s 2 '

s 3 '

s 4 '

exit"

end"

enter 'beer"

d i m ' r ' l ' s ' l "

local 'bud'blatz"

bud'0 ' : 'a"

b ' : ' c "

r ' : ' b l a t z '0"

r, s are global var iables '

bud, blatz are formal pa rame te r s '

this a is a global variable '

exit"

end"

0 ' ; ' r"

l ' : ' a "

2 ' : ' b "

66

4 ' : ' r "

5 ' : ' s"

ca l l ' z i l ch ' a rg '6 ' a rg '7 ' a rg '8"

ca l l ' bee r ' a rg ' 10'arg'20"

Global names are useful in allowing simple communication of
pa ramete rs which will always have the same name between procedure and
main program. However, they are not recommended for l ibrary proce­
dures or for other procedures which may be used several t imes in differ­
ent contexts. It is recommended that any global variables used be listed
explicitly in the operating instructions for the procedure, and that wher­
ever possible they be given names distinctive to the procedure. One con­
vention is to use the first three or four le t ters of the procedure name,
followed by a number, let ter , or other character . For example nonlocal
variables used in the Zilch procedure might be named: zi lcl ' , z i lc2 ' ,
zi lca ' , and so on. The likelihood of unintentional duplication of names of
this type is minimal.

E. Checking Procedures

Checking procedures requires some special consideration. Since
ordinarily procedures which are used have already been checked, complete
procedures with enter ' and end' operators are not normally t race-compiled,
regardless of the position of the TRANSFER CONTROL button. It i s , of
course, helpful to be able to bypass this rule when e r r o r s a re detected in­
side a procedure. To t race-compile a procedure the following rules must
be obeyed:

(1) The procedure to be checked must have the statement t r ace"
included immediately after the enter ' statement. To avoid
remaking the tape, it may be typed in from the keyboard. This
is done by depressing the MANUAL INPUT lever on the Flex­
owriter as soon as the second stopcode of the enter ' s tatement
has been read.

(2) The TRANSFER CONTROL button must be down. The t race
will not include statement numbers within the procedure which
are e rased when the end" statement is read.

To preserve these statement numbers, the following additional rules
must be followed:

67

(3) The statement before the enter ' statement must begin with
use ' sS ' , where sS' is the first statement of the main program.

(4) All other procedures necessary must have been translated
previously.

(5) There must be no duplication of statement numbers or of
local variable names between the procedure being checked and
the main program.

(6) The end" statement must be omitted from the procedure being
checked.

The conditions which must be observed in checking out a procedure
make it advisable to check out each procedure separately from the program
in which it is to be used. The effort required to write a small program to
provide input, the procedure call, and output to drive the procedure being
checked is well spent.

In checking procedures , it is necessary to concentrate attention on
one at a t ime. For complicated programs, this practice is advisable even
when it is not enforced by the language. Most experienced p rogrammers
find a systematic approach of this sort the best approach to program
checkout.

XVIII. MACHINE OPERATIONS

The operators described in this pr imer represent combinations of
sixteen basic machine operations designed to perform any operation of which
the computer is capable. ACT-III provides for the incorporation of machine
operations. The operators a re :

b r i n g '
add '
s u b t r '
m u l f
n m u l f
div '
e x t r f

(b)

(a)

(s)
(m)

(n)
(d)

(e)

hold '
c l e a r '
s t add '
r e f

u s e '
s top '
t r n '

(h)

(c)

(y)
(r)

(u)

(z)

(t)

They have right operands, which are the addresses of the machine o rde r s ,
and leave their resul ts in the accumulator. Their use requires a knowledge
of machine language programming, which is beyond the scope of this pr imer .
Fur the r information can be obtained by writing POOL, the LGP-30 u s e r s '
organization.

68

XIX. CONCLUSION

Our introduction to the language of the ACT-III compiler is now
completed. It is a powerful aid to programming algebraic and scientific
problems, and produces object programs which are more efficient than
most interpretive routines or unoptimized machine codes. Its scope is ,
indeed, wider than scientific programs. The inclusion of basic machine
operators permits it to be used as a convenient and effective symbolic
assembly program, and to express any program which can be programmed
for the LGP-30 by any means. Such problems as symbol manipulation,
data reduction, and many others fall within the range of the p rogrammer
skilled in its use. Fur ther skill in the language must be obtained p r i m a r ­
ily by practice and experimentation; this is left to the reader .

69

APPENDIX A

E r r o r s at Compile -Time

E r r o r
Printout Meaning

e l Symbol table full
(max. 126)

e l Too many constants

(max. 63)

e3 Incorrect constants

e4 Improper use of "end,''

"enter ," or "exit"

e5 Invalid bracket count

e6 Statement too large

e7 Statement number too
large (max. 191)

e8 6-bit button up

e8 Invalid subscript

e8 Invalid operator

e8 Stopcode missing from
previous "dim," "index,"
"dbind," "enter ," or
"local" statement

e9 Invalid or missing operand

sOOO 0000 Storage exceeded

sxxx xxxx Undefined statement

Remedy

Put some variables into
regions

Read in some as data

^ Correct tape and res ta r t at
beginning of statement

Segment statement and r e s t a r t
at beginning of statement

Correct tape and res ta r t at
beginning of statennent

Restar t at beginning of
statement

Correct tape and r e s t a r t at
beginning of statement

Rewrite program

Correc t p rogram and recompile

70

APPENDIX B

E r r o r s at Run-Time

NOTE: Continuing the program after an e r r o r display will produce
invalid resul t s .

Operator E r r o r Type Meaning

+ , -, X, / e l Floating-point overflow

exp, flo, xlOp, pwr el Floating-point overflow

/ e2 Division by zero

pwr e2 Left operand negative;
or left operand zero and
right operand negative

Operand zero or negative

Operand grea ter than 10^

Operand negative

Integer overflow

Left operand zero and
right operand negative

In, log

sin, cos

sqrt

ix, i / , unflo,

ipwr

fix

eZ

e2

e2

e3

e3

71

Page Code Example

18 [

13 ;

iflo

a ' ; ' b '

15

15

17

15

15

47

47

47

47

47

+

-

0-

X

/
i +

i-

ix

/̂
nx

a'+'b'

a'-'b'

O-'aa'

a'x'b'

nu'/'den

n'i + 'k'

n' i-' k'

j'ix'k'

j'i/'k'

j'nx'k'

17 abs a b s ' a v '

48 iabs i abs 'kk '

48 flo n ' f lo 'b '

j ' unf 1 o' b '

48 fix j ' f i x ' b '

48 ipwr a'ip"wr'n'

49 xlOp a 'x lOp 'n '

A P P E N D I X C

A C T - I I I O p e r a t o r s

Meaning P r e c e d e n c e

Left b r acke t (maximum of 7)

Right b r a c k e t (bracke ts o v e r - r u l e
p recedence)

Substi tute value a. into h^ 0

(a unchanged)

F loa t ing-poin t addition 1

F loa t ing-poin t subt rac t ion 1

F loa t ing-poin t negation of aa 3

F loa t ing-poin t mult ipl icat ion 2

F loa t ing-poin t division 2

In teger addition 1

In teger subt rac t ion 1

In teger mul t ip l icat ion 2

In teger division 2

F a s t in teger mul t ip l icat ion for p r o d - 2

uct < 134,217,728

Absolute value of f loat ing-point av 3

Absolute value of in teger kk 3
Genera te f loat ing-point equivalent of 3
in teger b̂ "with l a s t ri digits f rac t ional
(b̂ unchanged)
Genera te rounded in teger equivalent of 3
f loat ing-point h^ with dec imal moved
j p l aces r ight

Unfloat but drop f ract ional digi ts 3

In teger â to in teger ii 'th power 3

Move dec imal point of f loat ing-point 3
a, n p l ace s r ight

72

Page Code Example

INPUT-OUTPUT

23 read r e a d ' a "

61 punch punch 'a"

24 pr in t n ' p r i n t ' a "

25 dpr t i ' dp r t ' a "

23 i r ead i r e a d ' a "

61 rdflo n ' rd f lo ' a"

61 ipch ipch'n"

25 ipr t n ' i p r t ' i "

61 a r ead a r e a d ' b "

60 apr t ap r t ' b "

60 dapr t d a p r t ' n ' e ' g "

61 r e p r t n ' r e p r t ' c r 4 "

61 hxpch hxpch'a"

61 rdhex rdhex 'a"

31 rdxit rdx i t ' s 13"

26 c r c r '

26 tab tab '

*P recedence does

Meaning P r e c e d e n c e

Read f loat ing-point number and s to re 0
in _a

Punch f loat ing-point a with condi - 0
t ional stops for input

(n. = 100c_ + s) p r i n t a as a f loat ing- 0
point number in c_ co lumns , rounded
to ŝ significant digi ts

(i. = 100£ + s) p r in t f loat ing-point a 0
as dec imal number in c co lumns
with _s f rac t ional digits

Read an in teger number and s to re in a 0

Read in teger , conver t it to a f loat ing- 0
point value with l a s t n digi ts f rac t iona l ,
s to re in a

Punch in teger n with condit ional stop 0
for input

(n = 100c + f) p r in t in teger i_ in m i n - 0
imum of £ columns with f_ f rac t ional
digits (f not exceeding 8)

Read one word in alphabetic code 0

into b

P r i n t b as alphabetic informat ion 0

P r i n t specific c h a r a c t e r s ; example , *
neg
P r i n t individual c h a r a c t e r or con- *
t ro l n t imes

Punch a as a hexadec imal word with 0
conditional stop for input by rdhex

Read a hexadec imal word and s to re 0
in a.

Data input t e r m i n a t e s when a blank 0
word is read; control is t r a n s f e r r e d
to s l 3 '

Execute typewr i te r c a r r i a g e r e t u r n 0

Execute typewr i t e r tab Q

not apply

73

Page Code Example

CONTROL

Meaning P r e c e d e n c e

29 t rn

29 use

32 stop

57 r e t
go to

57 set
to

33 bkp4
bkpB
bkp l6
bkp32

34 of low

54 for
s tep
unt i l
r p e a t

29 if
neg
z e r o
pos

14 p r e v

50 index

52 dbind

50 d im

t r n ' s 7 "

s top"

r e f s2 '
u s e ' s i"

s e t ' s 2 '
t o ' s 7 2 "

bkp4'
u s e ' s2"

oflow'
u s e ' s 2 "

f o r ' m '
s t ep 'd '
un t i l ' j '
r p e a f s 3 "

i f ' a ' neg ' s i '
i f ' a ' neg ' s i '
i f ' a ' n e g ' s l '
i f ' a ' n e e ' s l '

T r a n s f e r control to s j^ if accumula ­
tor neg.

T r a n s f e r control to s 8 ' , r e g a r d l e s s

STOP! Continue if "START" p r e s s e d
on console

T r a n s f e r to s 1' after s toring r e tu rn
a d d r e s s at s2' . wr i t ten s2 'go to'sO"

32 ' , of the f o r m s Z ' g o to'sO" , is made
to r ead sZ 'use ' s72"

F o r machines with overflow logic
mod. only; t r ans f e r control to s2 ' if
the bkpt. s'witch is down (on) o therwise
to the next sequential s t a tement

T r a n s f e r to sZ' if overflow o c c u r r e d
during preced ing i+ or ^ (overflow
logic mod. only)

I n c r e a s e integer m by in teger dj
t r a n s f e r to s3 ' if the new value of m^
is not g r e a t e r than j , o therwise to
next s t a tement

z e r o ' s2"
pos ' s3"
z e r o ' sZ 'pos ' s3"

If f loat ing-point or in­
t eger a is neg, t r ans f e r
control to sl_' if z e r o to
s 2 ' , if pos to s 3 ' , or
next s t a t ement if t e s t s
fail

p r e v ' - ' c v ' L a s t r e su l t to be the operand (must
be f i r s t opera t ion executed in the
s ta tement)

index 'k 'n" Set up k and ri for use as s u b s c r i p t s
(maximum of 30)

db ind ' i ' j " S e t u p i, j for u s e as double
s u b s c r i p t s

d im 'coe f ' lO ' R e s e r v e 10 sequent ia l locat ions for
bn '44" coef reg ion , 44 for bn region

* P r e c e d e n c e does not apply

74

Page Code

FUNCTIONS

17 sq r t

17 In

17 log

17 exp

Example

s q r t ' a '

In ' a '

log 'a '

exp 'a '

17 p w r a ' p w r ' b '

17

17

17

s i n

c o s

a r t an

s in 'a '

c o s ' a '

a r t an ' b

17 r andm randm'

Meaning

Square root of f loat ing-point a

Natura l l oga r i t hm of f loat ing-point a

Common loga r i t hm of floating-point a

E r a i s e d to the f loat ing-point a ' th
power

F loa t ing-poin t 3. r a i s e d to f loat ing­
point b ' th power

Sine of (floating-point a in r ad ians)

Cosine of (floating-point a in r ad ians)

F loa t ing-poin t angle in r ad ians whose
tangent = b

Genera te p s e u d o - r a n d o m f loat ing­
point value between 0 and 1

SUBROUTINE OPERATIONS

62

59 call
a r e

e n t e r ' c a l c '
b l 2 "

ca l l ' c a l c '
a r g ' a "

65

62

62

66

46

47

local

exit

e n d

t r a c e

wait

r e m d r

local"

exit '

end"

t r a c e "

wai f

r e m d r

Denotes s t a r t of source language sub­
routine named calc b l 2 is a dummy
symbol which r e f e r s to a sequent ia l
block of data specified in the main
p r o g r a m - c a l l i n g sequence

Main p r o g r a m - c a l l i n g sequence which
t r a n s f e r s to the subrout ine n a m e d
calc and m a k e s dummy symbol b l 2
mean and re fe r to actual region a

Denotes that va r iab le n a m e s p r e c e d ­
ing local in the subrout ine a r e global

Return control f rom subrout ine to
main p r o g r a m

Denotes end of source language
subroutine

Subroutine will be t r a c e compi led if
TRANSFER CONTROL button is down

Suspends compilat ion

(Special symbol) r e m a i n d e r of p rev ious
i / opera t ion

P r e c e d e n c e

3

3

3

3

*Precedence does not apply

75

APPENDIX D

Summary of Operations

Listed below are the most generally used "button pushing" opera­
tions for ACT-III. The steps marked with an as ter isk (*) pertain to
console buttons and those unmarked either to the Flexowriter or to the
reader-punch (for use with the ACT-III composite system tape).

READ COMPILER
Compiler tape in photoreader
Source in flex
I Sel rdr , Oflex
*O.C.N.S.

COMPILE SOURCE PROGRAM
I , 0 Sel flex
* 6-Bit, T.C. down
Start

PUNCH HEX TAPE
(H . S . punch)
I Sel flex
F lex manual down
*O.C.N.S. doatZgOO'
Start O Sel punch
*Bkp 32 down Start
(Flex)
I, O Sel flex
F lex manual down
*O.C.N.S.
doat2900' Start
F lex punch on - identify
Start

READ RUNNING TAPE P5B
P5B in photoreader
I Sel r d r . O flex
Data in flex O.C.N.S.*

PROGRAM IN MEMORY
I, O Sel flex
Flex manual down
*O.C.N.S. doat0300'
Start Flex manual up
Start

PROGRAM NOT IN MEMORY
I Sel reader , O flex
Read P5Band Hex tapes
I Sel flex
Flex manual down O.N.S.*
Flex manual up

RESET COMPILER
T-Tape in flex
I , 0 Sel flex
*O.C.N.S.

LEGEND

I, O
Sel
rdr
flex
T.C.
Bkp
doat2900'
O.C.N.S.

O.N.S.

'0300'

Input, Output
Selector switch
photoreader
typewriter or Flexowri ter
Transfer control button
Breakpoint button
typed from keyboard
One operation, clear counter, normal , s tar t compute

buttons
One operation, normal , s tar t compute buttons

76

APPENDIX E

ACT-III Operators and Decimal Memory Pr in t

The first two codes (underlined) below are a jump to the statement
stop routine, and a jump to the first executed instruction of the p rogram.
They are found on every ACT-III object program.

0300 u6048 u0302

0302 .OOlllqwj h3062

0304 ,00211qwj h5336 b3062 r4813 u4600 h3061

' 0310 ,00311qwj h5336 b6200 r4813 u4600 h3061

0316 ,00411qwj h5336 b3062 r4813 u4835 h306l

0322 ,00511qwj h5336 b3062 r4813 u4807 h3061

0328 ,00611qwj h5336 b3062 r4813 u4707 h3061

0334 ,00711qwj h5336 b3062 r5506 u5130

0339 ,00811qwj h5336 b3062 r5506 u5201

0344 ,00933034 u4900 h3063

0347 .OOfUqwj a3062 h306l

0350 .OOgUqwj a6201 h306l

0353 ,00jllqwj s3062 h306l

0356 .OOkllqwj h5336 b3062 r4813 u4200 h3061

0362 ,00qllqwj h5336 b3062 r4813 u4300 h3061

0404 ,00wllqwj n3062 m5952 h306l

0408 ,01011qwj h5336 b3062 r5506 u4500 h3061

0414 .OlUlqwj h5336 b3062 r4813 u4510 h3061

0420 ,012f0308

s l9 ' for 'a ' s tep '1 'unt i l 'b ' 0421 ,01313q04 h5739 a3063 h3063 s3062 s5739
r p e a f s l " m5739 t0302

s20' waif 04Z9 ,02933f0j

The next six statements are t raced '

s i '

s 2 '

s 3 '

s 4 '

s 5 '

s6 '

s 7 '

s 8 '

s 9 '

s lO '

s i r

s l 2 '

s l 3 '

s l 4 '

a ' ; ' b "

a ' + ' b ' ; ' c "

a ' + ' . 3 1 4 1 ' 5 9 ' e ' l

a ' - ' b ' ; ' c "

a ' x ' b ' ; ' c "

a ' / ' b ' ; ' c "

a ' p r i n t ' b "

a ' d p r f b "

r e a d ' a "

a ' i + ' b ' ; ' c "

a ' i + ' l ' ; ' c "

a ' i - ' b ' ; ' c "

a ' i x ' b ' ; ' c "

a ' i / ' b ' ; ' c "

sl5' a'nx'b';'c"

sl6' a'ipwr'b' ;'c'

sl7' a'xlOp'b';'c"

sl8' use'sl"

s21' iread'a"

s22' i'iprfa"

0429 ,02933f0j u5821 r5506 u5500 h3063

0434 ,01633fOj u5821 b3060 h5336 b3063 r5506
u5552

s23' abs'a';'b" 0441 ,01733f0j u5821 b3063 r5506 t5161 h3062

77

s24' iabs'a';'b" 0447 ,01833f0j u5821 b3063 r5506 t5740 h3062

s25' punch'a" 0453 ,01933f0j u5821 b3063 r5506 u5137

s26' waif 0458 ,03511qwj

End of trace '

s27' ipch'a" 0458 ,0351 Iqwj r5506 u6000

s28' aread'a" 0461 ,01j33718 u586l h3063

s29' aprf a" 0500 .Olkllqwj r5506 u5759

s30' ifa" 0503 ,01qllqwj

s31' if'a'neg'sl" 0504 .Olwllqwj t0302

s32' if'a'neg'sl'zero'sl" 0506 ,0Z011qwj t0302 t0511 s6109 t0302

s33' if a'neg'sl'zero'sl' 0511 ,02111qwj t0302 t0516 s6109 t0302 m5662
pos'sl" t0302

s34' if'a'zero'sl'pos'sl" 0518 ,02Zllqwj t05Z2 s6109 t0302 m5662 tO302

s35' cr" 0524 ,02381000 zOOOO

s36' tab" 0526 ,02481800 zOOOO

s37' a'flo'b';'c" 0528 ,02511qwj h5336 63062 r4813 u4528 h306l

s38' prev'+'a';'b" 0534 ,026j3590 b3063 r4813 u4600 h306Z

s39' a'rdflo'b';'c" 0539 ,02711qwj h5336 r5506 u5500 r4813 u4528

h3062 h3061

s40' a'unflo'b';'c" 0547 ,02811qwj h5336 63062 f5506 u4414 h306l

s41' a'fix'b';'c" 0553 ,02911qwj h5336 63062 r5506 u4207 h3061

s42' dim'a'10" 0559 ,055f0600

s43' index'jk" 0559 ,055f0600 u0561 r5635 u5600-r5602

s44' dbind'ij" 0600 ,02jf0614 r5619 u5607 z4600-r5609

s45' daprf d'a'p'r't" 0605 ,02k81500 zOOOl p5700 zOOOl p3300 zOOOl
pl300 zOOOl p4500 zOOOl

s46' a'reprfcr4" 0615 ,02qllqqj m5662 tO620 u0624 z3200 pl600
a5809 t0619 h6309 z3200

s47' stop" 0625 ,02w00000

s48' rdxif si" 0626 ,03033620 u0629 u0302

s49' ret'sl'use's2" 0629 ,03130308 u0304

s 5 0 ' go t o ' sO"

s 5 1 ' t r n ' s l "

s52 ' s q r f a ' ; ' b "

s 5 3 ' l n ' a ' ; ' b "

s54 ' l o g ' a ' ; ' b "

s 5 5 ' e x p ' a ' ; ' b "

s56 ' a ' p w r ' b ' ; ' c "

s57 ' s i n ' a ' ; ' b "

s 5 8 ' c o s ' a ' ; ' b "

s59 ' a r t a n ' a ' ; ' b "

s 6 0 ' r a n d m ' ; ' a "

s 6 l ' s e t ' s l ' t o ' s 2 "

s62 ' bkp4"

s 6 3 ' bkp8"

s64 ' r d h e x ' a "

s 6 5 ' c a l l ' s u b ' a r g ' a "

s66 ' hxpch ' a ' "

Note : The 0 - ' o p e r a t o r

0631 ,032f067j

0632 ,033g0308

0633 ,03411qqj r4813 u3100 h3062

0637 ,03511qqj r4813 u3700 h3062

0641 ,03611qqj r5506 u3807 h3062

0645 ,03711qqj r4813 u3900 h3062

0649 ,03811qqj h5336 b3062 r5506 u3800 h3061

0655 ,03911qqj r4813 u3400 h3062

0659 ,03fllqqj r4813 u3500 h3062

0663 ,03gllqqj r4813 u3200 h3062

0703 ,03jl2q94 h4801 b5254 n4947 m5629 e4834
h5254 r4813 u5003 h3059

0713 ,03k30308 u0716 u0304

0716 ,83q00400 u0719

0718 ,83w00800 u0721

0720 ,040k3590 pOOOO iOOOO h3059

0724 ,04131qj4 u3050 z3059

0727 ,04211qqj r5506 u6037 zOOOO

consists of a r5506 u5161.

79

APPENDIX F

Codes for "aread"

Symbol

)o
L l

*2

"3

A4

%5

$6

•nl

28

(9

Space

_"

=+

? /

] .

[.
T a b

Lower

Upper

Color

Carr .

Case

Case

Shift

Return

Back Space

1

Code

04

Oj

14

I j

24

2j

34

3j

44

4j

06

Oa

16

l a

26

2a

36

30

08

10

18

20

28

40

Symbol

Aa

Bb

Cc

Dd

Ee

Ff

Gg

Hh

l i

J j

Kk

L l

M m

Nn

Oo

P P

Qq

R r

Ss

Tt

Uu

Vv

Ww

Xx

Yy

Zz

Code

72

Of

6f

2f

4f

54

5j

62

22

64

6j

Oj

3f

32

46

42

74

If

7f

5f

52

3a

^}

4a

12

02

80

APPENDIX G

Solut ions to E x e r c i s e s

P r o g r a m m i n g p r o b l e m s s e l d o m have a unique so lu t ion . The s o l u ­
t ions m a y v a r y in d i r e c t n e s s , in a c c u r a c y , and in e f f ic iency , a s m e a s u r e d
by s p e e d and s t o r a g e r e q u i r e m e n t s . If y o u r so lu t i ons di f fer f r o m the ones
g iven h e r e , c o m p a r e t h e m in t h e s e r e s p e c t s ; it m a y w e l l be tha t y o u r s o l u ­
t ions a r e b e t t e r . The r e a l t e s t of a p r o g r a m is w h e t h e r it c o m p u t e s wi thou t
e r r o r i nd ica t ion and p r o d u c e s the d e s i r e d r e s u l t s .

C a r r i a g e r e t u r n s and t abs a r e u s e d b e t w e e n s t a t e m e n t s t h roughou t
the p r o g r a m p o r t i o n of t h e s e s o l u t i o n s .

E X E R C I S E 1

In t ege r Value

a.) 1

b.) 321456

c.) -52

d.) 536,870,911

e.) -536 ,870 ,911

f.) 0

g.) 742,125,000

h.) 3.1416

P r o g r a m Cons tan t

a.) No s ign a l lowed

b.) Negat ive

c.) +1234"

d.) +1 '23456 '

e.) 1'

f.) Sign n e e d e d

g.) Too l a r g e

h.) Nega t ive

P r o g r a m Cons tan t
D a t a o r

P r o b l e m P a r a m e t e r

1' o r + 1 "

+ 3214 '56 '

Nega t ive

+ 5 3 6 8 ' 7 0 9 1 1 '

Negat ive

0' o r +0"

Too l a r g e

Not an i n t e g e r

E X E R C I S E 2

Data or
P r o b l e m P a r a m e t e r

+0 '

- 1 '

+1234 '

+123456

+ 1'

+ 102 '

Too l a r g e

-7000000 '

+ 1'

+321456 '

- 5 2 '

Too l a r g e

Too l a r g e

+ 0'

Too l a r g e

Not an i n t e g e r

I n t e g e r Value

0

-1

1,234

123,456

1

102

700 ,000 ,000

-7 ,000 ,000

81

N u m b e r

a.) 0

b.) 15.0

c.) 6.02 X 1 0 "

d.) -3 .00 X 10^°

e.) 3 .14159265

f.) 5.3 X 10^'

-32 - .195 X 10

.253 X 10"

P r o g r a m C o n s t a n t

a.) . 5 1 2 ' 3 4 6 7 8 ' e ' 5 '

b.) . 5 " e - ' 3 2 '

c.) E x p o n e n t too l a r g e

d.) Nega t ive

e.) F r a c t i o n h a s s ign

f.) E x p o n e n t s ign
shou ld fol low e

g.) Only t h r e e w o r d s

h.) Six c h a r a c t e r s in
f i r s t w o r d

E X E R C I S E 3

P r o g r a m C o n s t a n t
Data or

P r o b l e m P a r a m e t e r

0 '

. 1 5 " e ' 2 '

. 6 0 2 " e ' 2 4 '

Nega t ive

. 3 1 4 1 ' 5 9 2 6 5 ' e ' l '

Too l a r g e

Nega t ive

. 2 5 3 " e - ' 3 2 '

E X E R C I S E 4

Numbe r

51 ,234 .678

. 5 x 10"^^

.7 X 10'^

- .4

.512 X lO '

.512 X 10"^

.512 X 10"^

.512342678

0'

+ 15 '+2 '

+ 602 '+24 '

-300 ' + l l '

+3141593 ' + 1'

Too l a r g e

- 1 9 5 ' - 3 2 '

+253 ' -32

Data or
P r o b l e m P a r a m e t e r

+ 5123468 '+5 '

+ 5 ' - 3 2 '

Too l a r g e

- 4 ' + 0'

+ 512 ' + 5 '

+ 5 1 2 ' - 5 '

+ 5 1 2 ' - 5 '

+ 5123427 ' + 0'

82

EXERCISE 5

Data or
Problem Paramete r Number P rogram Constant

a.) +0'+0' 0 0

b.) More than seven

digits - .123456789x10"^ Negative

c.) -12 ' -2 ' -.12 X 10"^ Negative

d.) +123456'+7' .123456x10' ' . 1234'56'e'7 '

e.) +1230000' + 7' . 1230000x10 ' .123"e'7'

f.) Leading zeros .123 x lO' .123"e '3 '

g.) More than seven
digits .123456789 X 10"' . 1234'56789'e- '5 '

h.) Decimal point .1234567x10" ' . 1234 '567 'e - ' l '

EXERCISE 6

Examples a.), d.), f.), g.), and h.) represent acceptable names for
simple variables.

The other examples are unacceptable: b.) has more than five char­
ac te rs ; c.) is a multiplication operator; e.) is a sine operator; i.) is a s ta te­
ment label; and j .) is a constant.

EXERCISE 7

The values of the variables after each of the statements a re :

a b c tempi

0 ' : 'a" 0

l ' : ' b " 0 1 -

2 ' : ' c " 0 1 2

a ' : ' t empi" 0 1 2 0

b ' : ' a " 1 1 2 0

c ' : ' b" 1 2 2 0

t empi ' : ' c " 1 2 0 0

83

EXERCISE 8

a.) .1 + (.2 X .8) = .26

b.) (.l/.2) + (.8 X .4) = .82

c.) (.1 X .2) (1/.8) (.4) = .01

d.) (.1 / . 2) / .8 = .625

e.) .1 - .2 X .8 / .4 = -.3

EXERCISE 9

a.) ['['['0-'z'x'.25 "e'0'+'.3333'3333'e'0']'x'z'-'.5000"e'0']'x'z'
+ '.9999'99999'e'O'J'x'z':'res"

b.) z'/'['.9999'99999'e'0'+'z'/'['.2 "e'l'+'z'/'['.3 "e"+.2000"e'O'
x'z']']']':'res"

c.) z'x'['.llll'lllll'e'0'+'.1888'8889'e'l'/'['z'+'.2431'3725'e'l'-'
.4805'8439'e'0'/'['z'+'.1568'6275'e'l']':'res"

d.) z ' x ' . l l l l ' l l l l l ' e ' 0 ' + ' . 1 8 8 8 ' 8 8 8 9 ' e ' l ' - ' . 4 5 9 2 ' 5 9 2 6 ' e ' l ' / ' [' z ' + '
. 2 6 2 9 ' 0 3 2 3 ' e ' l ' - ' . 2 7 0 9 ' 8 5 0 8 ' e ' O ' / ' [' z ' + ' . 1370 '9677 'e '1 '] '] ' : ' r e s "

The c o m p a r i s o n of the e x p r e s s i o n s is shown in the following t ab le :

R e m a r k s

P o o r a p p r o x i m a t i o n

Bes t

Dif ference of two r e l a t i v e l y l a r g e n u m b e r s .

EXERCISE 10

s q r f [' e x ' x ' e x ' + ' y ' x ' y '] ' : ' r h o "

a r t a n ' [' y ' / ' e x '] ' : ' p h i "

r h o ' x ' c o s ' p h i ' : 'ex"

r h o ' x ' s i n ' p h i ' : ' y "

e x l ' + ' e x 2 ' : ' s u m r l "

y l ' + ' y 2 ' : ' s u m i m "

e x l ' - ' e x 2 ' : ' d i f r l "

y l ' - ' y 2 ' : ' d i f i m "

e x l ' x ' e x 2 ' - ' y l ' x ' y 2 ' : ' p r d r l "

a.)

b.)

c.)

d.)

+ ,-

3

3

4

5

x , /

4

4

3

3

Cl ons t an t s

4

4

5

6

84

e x l ' x ' y 2 ' + ' e x 2 ' x ' y l ' : ' p r d i m "

e x l ' x ' e x 2 ' + ' y l ' x ' y 2 ' : ' a r g "

[' e x l ' x ' e x 2 ' + ' y l ' x ' y 2 '] ' / ' a r g ' : ' q o t r l "

['ex2 ' x ' y l ' - ' e x l ' x ' y 2 '] ' / ' a r g ' : ' qo t im"

E X E R C I S E 11

a.) +0000000 '+1234567 ' -5 '

b.) +0001605' + 1 2 3 4 5 6 7 ' - 5 '

c.) +0000802 '+1234567 ' -5 '

d.) +0000802' + 1234567' + 0'

e.) +0000200 '+1234567 ' + 0'

f.) +0000202 ' -1234567 '+5 '

n'iprt'n'

0

0.01605

8.02

8.02

200

2.02-

n'print'b'

. e-05

.12346 e

.1 e-05

.1 e 00

. e 00

. e 05

-05

n'dprf b'

.00000

.00

.12

-12346.

g.) + 0 0 0 l 6 0 8 ' + 1234567' + 5' 0.00001608 .12345672 e 05 12345.67211940

In the i n t e r e s t of c l a r i t y , the output above h a s b e e n a r r a n g e d in
c o l u m n s . Below is the output a s the p r o g r a m has been w r i t t e n .

Ex. 11

+0000000' + 1234567'-5' 0

+ 000l605'+1234567'-5'

+ 0000802'+1234567'-5'

+0000802' + 1Z34567' + 0'

+0000200'+1234567' + 0' 200

e-05 .

0.01605

8. 02 .1 e-05

8. 02 . 1 e 00

e 00 .

.12346 e-05

.00

.12

.00000

+0000202'-1234567'+5' 2.02- e 05-12346 .

g. +000l608 '+1234567 ' + 5' 0.00001608 .12345672 e 05 12345.67211940

85

E X E R C I S E 12

. 4 5 " e ' l ' : ' t e m p " 0 ' : ' d e g "

s i ' d e g ' x ' . 1 7 4 5 ' 3 2 9 2 5 ' e - ' l ' : ' r a d " c o n v e r t d e g r e e s to r a d i a n s '

c r ' 1 0 0 0 ' d p r t ' d e g " c o s ' r a d ' : ' t e m p "

i f ' t e m p ' z e r o ' s 9 5 " sk ip d iv i s ion by z e r o '

1 6 0 5 ' d p r t ' [' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 ' / ' t e m p '] " p r i n t s e c a n t '

s 5 ' s i n ' r a d ' : ' t e m p "

i f ' t e m p ' z e r o ' s 9 6 " skip d iv is ion by z e r o '

I 6 0 5 ' d p r t ' [' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 ' / ' t e m p '] " p r i n t c o s e c a n t '

s 6 ' d e g ' + ' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 ' : ' d e g " p r e v ' - ' t e s t ' : ' t e m p "

t r n ' s l " c r ' d e g ' + ' . 4 5 " e ' l ' : ' t e s t " u s e ' s l "

s 9 5 ' d a p r f ' ' ' ' ' u ' n ' b ' o ' u ' n ' d ' e ' d ' ' ' ' u s e ' s 5 "

s 9 6 ' d a p r f ' ' ' ' ' u ' n ' b ' o ' u ' n ' d ' e ' d ' ' ' ' u s e ' s 6 " '

EXERCISE 13

The rou t ine at slOO has been a s s u m e d to be f(y) = y**p. Input
for p h a s b e e n a d d e d . '

s i ' r e a d ' p " r e a d ' a " p r e v ' ; ' y "

r e a d ' b " r e a d ' n " [' b ' - ' a '] ' / ' n ' : ' i n c r "

s 2 ' u s e ' s l O O "

s 3 ' i f ' y ' - ' a ' z e r o ' s l O " j u m p for f i r s t po in t . '

s 4 ' y ' + ' i n c r ' : ' y "

i f ' b ' - ' y ' n e g ' s l 5 " t e s t a f te r i n c r e m e n t i n g b e c a u s e a t e s t for

equa l i ty m i g h t fail due to round off

s u m ' + ' f ' : ' s u m " u s e ' s 2 "

s l O ' 0 - ' f ' x ' . 5 " e ' 0 ' : ' s u m " u s e ' s 4 "

s l 5 ' 1 6 0 8 ' p r i n f [' [' s u m ' + ' f ' x ' . 5 " e ' O ' J ' x ' i n c r '] "

u s e ' s l " r e t u r n for new i n t e g r a l '

slOO' y ' p w r ' p ' : ' f " u s e ' s 3 " '

86

Test Data

+ 1000010' + 1'
+ 1000000'+1'

+ 1000000'+2'
+ 1000000'+2'

a +0000000'+0'
n +1000000'+2'

a +0000000' + 0'
n +1000000'+3'

Output

.49999720 e 00

.90991443 e 00

EXERCISE 14

Greatest Common Divisor'

s i ' i read ' sml i"

s2' p r ev ' i / ' sm l i"

r emdr ' ; 'sml i"

s3 ' cr ' lOOO'iprfsml i"

s4 ' s top'use 'si '"

i read ' l rg i"

if' r emdr ' z e ro ' s 3 "

bring'tempi"

u s e ' s l "

EXERCISE 15

sml i ' ; ' tempi"

use ' s2"

New numbers are tested and assigned until a blankword is read
then the print-out is made. '

s i r

s i '

s5 '

s6'

rdxif si 0"

iread'max"

iread'new"

if 'abmax'i- 'abnew'neg's5"

new': 'max"

new': 'min"

slO' cr'lOOO'iprf max"

iabs 'max': 'abmax': 'abmin"

iabs'new': 'abnew"

if 'abnew'i- 'abmin'neg 's6"

abnew': 'abmax"

abnew': 'abmin"

lOOO'iprf min"

u s e ' s l "

u s e ' s l "

u s e ' s l "

lOOO'iprf ['max ' ipwr 'min ']" u s e ' s l l '"

EXERCISE 16

s i ' read 'y"

1200'iprt'['O'fix'y'

1200'iprt '['3 'fix'y'

c r '1200 ' ipr t ' ['O'unflo'y']"

1200' iprt ' ['3 'unflo 'y ']"

1200'iprt ' [' ['O'i- '2 '] 'unflo'y '

1200'iprt ' [' ['0 ' i - '2 '] ' f ix 'y ']" u se ' s l "'

87

a.)

b.)

c.)

d.)

e.)

f.)

g)

h.)

y

.51635

.051635

.00051635

-51 .6354

51.6354

51.0000

- .0005163542

516354200

0'unflo

1

0

0

-52

52

51

0

O'fix

0

0

0

-51

51

50

0

3'unflo 3'fix

516

51

0

51635

51635

50999

0

['O'i-

unflo

0

0

0

-1

1

1

0

'2']

fix

0

0

0

0

0

0

0

E r r o r 3 unflo s top - Number too l a r g e

EXERCISE 17(A)

Note e r r o r be tween 0 and 100'

0 ' ; ' n "

s i ' c r ' 5 ' ; ' c r t n "

s 2 ' 1 7 0 9 ' p r i n f n "

t r n ' s 3 "

s 3 ' s top ' "

n ' + ' . 9 9 9 9 ' 9 9 9 9 9 ' e ' 0 ' ; ' n " . 1 0 5 ' 0 0 0 0 0 ' e ' 3 ' - ' n ' ; ' n t e s t "

c r t n ' i - ' l ' ; ' c r t n " i f c r t n ' z e r o ' s l ' p o s ' s Z "

Output

.000000004

.499999885

.999999706

.149999921

.199999873

.249999825

.299999778

.349999730

.399999682

,449999635
.499999587

549999539
599999492

649999444
699999396

749999349
799999301

849999253
899999205
949999158
999999110

e
e

e
e
e
e
e

e
e
e
e

e
e

e
e

e
e
e
e
e
e

00
01
01
02
02
02
02

02
02
02
02

02
02

02
02

02
02
02
02
02
02

.999999945

.599999849

.109999959

.159999911

.209999863

.259999816

.309999768

.359999720

.409999673

.459999625

.509999577

.559999530

.609999482

.659999434

.709999387

.759999339

.809999291

.859999244

.909999196

.959999148

e
e

e
e
e
e
e

e
e
e
e

e

e
e
e
e
e

e
e
e

00
01
02
02
02
02

02

02
02
02
02

02
02

02
02
02
02

02
02
02

.199999992

.699999813

.119999949

.169999902

.219999854

.269999806

.319999759

.369999711

.419999663

.469999616

.519999568

.569999520

.619999472

.669999425

.719999377

.769999329

.819999282

.869999234

.919999186

.969999139

e
e
e

e
e
e
e

e
e
e
e
e

e

e
e
e
e

e

e
e

01
01
02

02
02
02
02

02
02
02
02
02

02
02
02

02
02

02
02
02

.299999956 e

.799999778 e

.129999940 e

.179999892 e

.229999844 e

.279999797 e

.329999749 a

.379999701 e

.429999654 e

.479999606 e

.529999558 e

.579999511 e

.629999463 e

.679999415 e

.729999368 e

.779999320 e

.829999272 e

.879999225 e

.929999177 e

.979999129 e

01
01
02
02
02
02
02

02
02
02
02
02
02

02
02
02

02

02
02

02

.399999921 e

.899999742 e

.139999930 e

.189999883 e

.239999835 e

.289999787 e

.339999740 e

.389999692 e

.439999644 e

.489999596 e

.539999549 e

.589999501 e

.639999453 e

.689999406 e

.739999358 e

.789999310 e

.839999263 e

.889999215 e

.939999167 e

.989999120 e

01
01
02
02
02
02
02
02
02
02
02
02
02

02
02

02
02

02
02

02

s 4 '

s 5 '

s6'

E X E R C I S E 17(B)

Note e r r o r be tween 0 and 100. '

0 ' ; ' n "

c r ' 5 ' ; ' c r t n "

O ' f lo 'n ' ; ' n f lo"

1 0 0 ' i - ' n ' ; ' n t e s t "

i f ' c r t n ' z e r o ' s 4 ' p o s ' s 5 "

s top ' "

Output

1 7 0 9 ' p r i n f nflo" n ' i + ' r ; ' n "

t r n ' s 6 " c r t n ' i - ' l ' ; ' c r t n "

000000004
500000004
999999945
149999980
199999992

250000004
300000016
350000028
399999980
449999992

500000004
550000016
600000028
649999980
699999992
750000004
800000016
850000028
899999980

949999992
999999945

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

00
01
01
02
02
02
02
02
02

02
02
02
02
02
02
02
02
02
02

02
02

.999999945

.600000028

.110000018

.160000030

.209999983

.259999995

.310000007

.360000018

.410000030

.459999983

.509999995

.560000007

.610000018

.659999971

.709999983

.759999995

.810000007

.860000018

.910000030

.959999983

e
e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e
e
e

e

00
01
02
02
02

02
02
02
02
02
02
02
02
02
02
02
02
02

02
02

.199999992

.699999992

.120000009

.170000021

.219999973

.269999985

.319999997

.370000009

.420000021

.469999973

.519999985

.569999997

.620000009

.670000021

.719999973

.769999985

.819999997

.870000009

.920000021

.970000033

e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
e

e
e

01
01
02
02
02
02
02
02
02

02
02
02
02
02
02
02
02
02

02
02

.300000016

.800000016

.129999999

.180000011

.230000023

.279999976

.329999987

.379999999

.430000011

.480000023

.529999976

.579999987

.629999999

.680000011

.730000023

.779999976

.829999987

.879999999

.930000011

.980000023

e
e
e
e
e

e
e
e
e

e
e
e
e
e
e
e
e
e
e
e

01
01
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02
02

02
02

.399999980 e

.899999980 e

.139999990 e

.190000002 e

.240000014 e

.290000026 e

.339999978 e

.389999990 e

.440000002 e

.490000014 e

.540000026 e

.589999978 e

.639999990 e

.690000002 e

.740000014 e

.790000026 e

.839999978 e

.889999990 e

.940000002 e

.990000014 e

01
01
02
02

02
02
02
02

02
02
02
02
02
02
02
02
02
02
02

02

EXERCISE 18

Sca la r P r o d u c t '

d i m ' a ' 5 1 ' b ' 5 1 " i n d e x ' j "

s i ' i r e a d ' n " 0 ' : ' j "

s 2 ' r e a d ' a ' j " j ' i + ' l ' : ' j "

0 ' ; ' j "

s 3 ' r e a d ' b ' j " j ' i + ' l ' : ' j "

0 ' : ' s p ' : ' j "

s 4 ' s p ' + ' a ' j ' x ' b ' j ' : ' s p " j ' i + ' l ' : ' j "

i f ' p r e v ' i - ' n ' n e g ' s 4 " 1 6 0 8 ' p r i n t ' s p " u s e ' s l

i f ' p r e v ' i - ' n ' n e g ' s 2 "

i f ' p r e v ' i - ' n ' n e g ' s 3 "

EXERCISE 19

The coefficient prod, i, is the sum of products pi, j x p2, i - j ,
where j runs between the grea ter of i - n2 and 0, and the lesser of i and
n l . (For statement used.) '

dim'polyl '64 'poly2'64'prod'128" index ' i ' j ' i - j "

s3 ' rdx i t ' s2" To read in the coefficients of

poly2.'

0 ' ; ' i ' ; ' j " ' Initialize indexes'

s i ' read 'polyl ' i " Read coefficient'

f o r ' i ' s t ep ' l ' un t i l ' 63 ' rpea f s i "

s top 'use ' s3" Too many coefficients'

s2' i ' i - ' l ' ; ' n l " i was incremented before discovery that
there is not another coefficient'

for ' j ' s tep '1 'unt i l '63 ' rpeat ' s5"

Too many coefficients'

p rev ' i+ 'n l ' ; ' l im i" 0'; ' i"

i ' i - 'n2 ' ; ' j " -

0 ' ; ' j "

i f ' p rev ' i - ' n l ' neg ' s9" n l ' ; ' l im j " "

sum'+'polyl ' j 'x 'poly2 ' i - j ' ; ' sum"

for ' j ' s tep '1 'unt i l ' l im j ' r p e a t ' s 9 " sum' ; 'prod ' i"

fo r ' i ' s t ep ' l ' un t i l ' l im i ' rpea t ' s7" 0' ; ' i"

slO' c r '1608 'pr in t 'p rod ' i " for ' i 's tep'1 'unti l ' l im i ' rpea f s lO"

c r ' c r ' u s e ' s 3 "'

s 4 '

s 5 '

s6'

s 7 '

s 8 '

s 9 '

rdxi t ' s6"

read'poly2 ' j "

stop'use ' s 3 "

j ' i - ' l ' ; ' n 2 "

0 ' ; ' sum"

i f ' j 'pos 'sS"

i ' ; ' l im j "

i ' i - ' j ' ; ' i - j "

90

EXERCISE 20

("For" statement used) '

d im'J '50" index'n"^

iread 'n" 0 ' i - ' l ' ; ' - l "

s3 ' r e a d ' J ' n ' l " read ' J 'n" read 'y"

cr '2308'print 'y" cr '300 ' ipr t ' ['n ' i+ '1 ']" 2008'prinf J 'n '1 "

c r '300 ' ipr f n" 2008'prinf J 'n" n ' i - ' l ' ; ' n "

s2' 0 ' f lo ' [' 2 'nx 'n ' i+ '2 '] ' / ' y 'x ' J ' n ' l ' - ' J ' n '2 ' ; ' J ' n" cr '300'iprt 'n"-

2008'prinf J 'n" for 'n ' s tep ' - l 'until 'O'rpeaf s2"

rdxit 's4" use ' s3"

s4' stop"'

EXERCISE 21

Matrix - Vector Product
n = number of rows in the vector and columns in the matrix, m = number of
rows in the matr ix '

iread'n" iread'm" d im'vc t r '10 'mtrx ' lOl"

index'k" dbind'ij" m ' ; 'm t rx '0"

l ' ; ' i j '0" 0';'k"

s i ' k ' i+ ' l ' ; 'k" i f 'k ' i - ' ['n ' i+ ' l '] ' zero 's2"-

read'vctr 'k" u s e ' s l "

s2' l ' ; ' i j ' l "

s3 ' i f ' i j ' l ' i - ' [' n ' i+ ' l '] ' ze ro ' s4" read 'mtrx ' i j "

i j ' l ' i+ ' l ' ; ' i j ' l ' ' use ' s3"

s4' i f ' i j '0 ' i - 'm 'zero ' s5" i j 'O' i+' l ' ; ' i j '0" use's2"-

s5 ' l ' ; ' i j '0 ' ' '

s6 ' 0'; 'sum" 1';'ij '1';'k"

s7 ' mtrx ' i j 'x 'vc t r 'k '+ ' sum' ; ' sum" k ' i+ ' l ' ; ' k"

i f ' k ' i - ' [' n ' i+ ' l '] ' z e ro ' s8" i j ' 1 ' i+ ' l ' ; ' i j ' 1 " use 's7"

s8 ' c r ' l608 'p r in f sum" if ' i j 'O'i- 'm'zero's9"-

i j '0 ' i+ ' l ' ; ' i j ' 0" use ' s6"

s9 ' stop'"

EXERCISE 22

91

s i '

s 3 '

s4 '

iread'rows"^

dim'mtrx'226"^

rows ' ; 'mtrx '0" '

slO'

s l l '

s i '

s2 '

s3 '

s4 '

s5 '

s6 '

s7'

s8'

i read 'colms"

l ' ; ' i j ' 0"

i read 'msize "

i f ' 225 ' i - 'ms ize ' neg ' s l0"

dbind'i j"

l ' ; ' i j ' l "

r ead 'mt rx ' i j "

for ' i j ' l ' s tep ' l 'un t i l ' co lms ' rpeaf s4"

for ' i j 'O'step'1 'unt i l ' rows' rpeaf s3 "

computation

c r ' d a p r f u c 2 ' M ' l c l ' a ' t ' r ' i ' x ' ' t 'o ' ' I ' a ' r ' g ' e "

stop'"

EXERCISE 23

Matrix Product '

i r ead 'm"

i read 'n"

i read 'k"

dim'mtrxa '401 'mtrxb'401 "

n ' ; ' m t r x a ' 0 "

l ' ; ' i j ' 0 "

l ' ; ' i j ' l "

r ead 'mt rxa ' i j "

for 'ij 'O'step' I 'un t i l 'm ' rpeaf si "

l ' ; ' j k ' l "

read 'mt rxb ' jk"

fo r ' j k ' 0 ' s t ep ' l ' un t i l ' n ' rpea f s 3 "

l ' ; ' j k ' l "

l ' ; ' i j ' l ' ; ' j k ' 0 "

mt rxa ' i j ' x 'm t rxb ' j k '+ ' sum ' ; ' sum" jk '0 ' i+ '1 ' ; ' jk '0"

for ' i j '1 ' s tep ' l 'unt i l 'n ' rpeat ' s7 " c r tn ' i+ ' l ' ; ' c r tn"

t rn ' sB" c r '0 ' i - '7 ' ; ' c r tn""

1608'prinf sum "̂ for ' jk ' l ' s tep ' l ' un t i l ' k ' rpea f s6"

for ' i j 'O's tep ' l ' un t i l 'm ' rpeaf s5" stop"''

rows in A'

columns in A and rows in B'

columns in B'

dbind'ij'jk"

k ' ; 'mt rxb '0"

for ' i j ' l ' s tep ' l 'un t i l 'n ' rpeafs2"

l ' ; ' j k '0"

for ' jk '1 ' s tep ' l 'un t i l 'k ' rpeaf s4"

l ' ; ' i j ' 0 "

c r ' 0 ' i - ' 7 ' ; ' c r t n "

0 ' ; ' sum"

92

EXERCISE 24

Binomial Coefficients'

dim'coef '64" index'm" i read 'nu"

p r e v ' i - ' l ' ; ' l i m i t " 0 ' ; ' n - l " .9999'99999'e '0 ' ; 'coef '0"

s i ' 0 ' ; ' templ ' ; 'm"

s2 ' tempi ' ; ' temp2" coef 'm' ; ' tempi " prev '+ ' temp2 ' ; ' coef 'm"

for'm'step'l 'unt i l 'n-1 ' rpeaf s2 "

..9999'99999'e'0'; 'coef'm" m is now n-1 + 1 r emark '

for 'n- l ' s tep ' l 'unt i l ' l imif rpeaf s i " 0 ' ; 'm"

s3 ' c r '3000 ' ipr f ['O'unflo'coef'm']" fo r 'm ' s tep ' l 'unt i l 'nu ' rpeaf s 3'"

EXERCISE 25

Factorial n'

rdxif s4"

s i ' i read 'n" t r n ' s3"

i f ' n ' i - ' l ' neg ' s3 ' ze ro ' s3" .9999'99999'e'0'; 'factn" l ' ; 'k"

s2' factn'x'0'flo'k'; 'factn" fo r ' k ' s t ep ' l ' un t i l ' n ' rpea f s2"

cr '2008'prinf factn" u s e ' s l "

s3 ' c r ' d a p r f c o l o r ' u c 2 ' I ' M ' P ' R ' 0 ' P ' E ' R ' 'N ' lc l ' co lor"

s4' stop'use 'si "'

EXERCISE 26

s i ' compute w, u, and y

if 'y 'neg's3 'pos 's2" r e t ' s 20 ' u se ' s l 2 "

compute N(u) x N(w) use ' s l

s2 ' se t ' s4 ' to ' s5"

s3 ' r e f sZO'use'slO"

s4' go to'sO"

compute Z(u) X N(W) u s e ' s l "

s5 ' compute Z(w) x N(u) u s e ' s l "

slO' Z of u and w computed and stored

s l 2 ' N of u and w computed and stored

s20' go to 'sO"

93

E X E R C I S E 27

E a c h s e t of da ta is p r e c e d e d by a n i n t e g e r for the i r e a d j va lue ,
t h e r e b y ind ica t ing the s t a t e m e n t to be u sed . In the f i r s t c a s e 1 is i r e a d
and c o n t r o l goes to s lO , s e c o n d c a s e , 2, and c o n t r o l goes to s30 and so on.
In the fifth c a s e w h e r e s20 is r e u s e d j is s e t aga in equa l to 3. If j is s e t
equa l to 5 c o n t r o l i s t r a n s f e r r e d to s i 01 and the p r o g r a m s t o p s . '

i n d e x ' j "

slOO' i r e a d ' j "

s l O ' r e a d d a t a , c o m p u t e .

u s e ' s l 0 1 ' u s e ' s 4 0 ' u s e ' s 2 0 ' u s e ' s 3 0 ' u s e ' s l 0 "

u s e ' s l O O ' j "

u s e ' s l O O "

u s e ' s l O O "

p r i n t

s 3 0 ' r e a d da ta , c o m p u t e ,
p r i n t

s 4 0 ' If a v a r i a b l e a m o u n t of da ta is n e c e s s a r y in any of t he se subsec t i ons
a r d x i t m a y be se t , a s in

r d x i f s 4 5 "

r e a d da t a - da t a wi l l be r e a d in unti l a b lankword is r e ad , con t ro l
i s then t r a n s f e r r e d to s45 .

s 4 5 '

s l O l '

c o m p u t e , p r i n t

s top ' "

u s e ' s l O O "

EXERCISE 28

l i m n : n u m b e r of w o r d s in n a m e code, l imd: n u m b e r of w o r d s in date
code , run : run n u m b e r , sp l : space on f i r s t l ine , sp2: space on
s e c o n d l i n e '

i read ' run ' i read ' sp l " iread'spZ"

index'j" 1'; 'j ' ; 'page"

for ' j ' s tep ' l 'unt i l ' l imn'rpeat 's l " 1';'j "

for'j 'step' 1 'unti l ' l imd'rpeaf s2" use ' s3"
s i '

s 2 '

s33 '

s 3 '

s 4 '

s 5 '

i read ' l imn ' i read ' l imd

dim' name ' 5' date ' 6 "

a read 'name ' j "

a read 'da te"

page' i+ ' l ' ; 'page"

l ' ; ' j "

a p r f name ' j "

s p l ' r e p r f "

a p r f date ' j"

lOOO'iprf run"

lOOO'iprfpage"

s6'

for'j 'step' 1 'unti l ' l imn'rpeat 's4"

l ' ; ' j "

for'j 'step' 1 'unti l ' l imd'rpeat 's5 "

spZ'reprt ' " daprf p ' . "

64 ' ; 'cr tn"

Computation, and after or ' for blank line,

c r t n ' i - ' 4 ' ; ' c r t n " i f 'c r tn 'zero 's33 'pes ' s6 "

94

At end of computation,

s7 ' i f '64 ' i - ' c r tn 'zero ' s9" 4 ' r ep r t ' c r4"

c r tn ' i - ' 4 ' ; ' c r tn" use ' s7"

s9' run ' i+ ' l ' ; ' run" 0'; 'page" use 's33 '"

Name and date data to print, John Doe 4-July-62 Run No. +3'+6'+1' + 71'+68'

uc Jlc o h nspuc Die o e 4 -uc J Ic u 1 y - 6 2cr uc Rlc u nspuc Nlc o . sp

10640846'6232 0610'2f 08464f'240a 1064'08520J12'0a34142O'I 01 f 0852'32061032'08462a06'

ARGONNE riAT'.ONAL LABV>/EST

iiiii"

